НАНОГИБРИДНЫЙ ФУНКЦИОНАЛЬНЫЙ СЕПАРАЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МОДИФИЦИРОВАННОГО НОСИТЕЛЯ И МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦ МЕТАЛЛА Российский патент 2015 года по МПК B01J20/281 B01J20/22 B82B3/00 B01J20/30 

Описание патента на изобретение RU2555030C2

Изобретение относится к области материаловедения, а также к аналитической химии. Изобретение может быть использовано для получения материалов как для разделения рацематов оптически активных соединений в хроматографии, так и для выделения индивидуальных изомеров и контроля энантиомерной чистоты (например, аминокислот, пестицидов и других биологически активных соединений).

Известны функциональные сепарационные материалы для разделения рацемических смесей, получаемые иммобилизацией путем адсорбции гидрофобных производных оптически активных аминокислот на минеральном носителе (патент США №4851382 от 25.07.1989). В качестве носителя используют SiO2. Модифицирование проводят в динамическом режиме производным аминокислоты с последующей координацией ионов металла (меди) на поверхности носителя. Максимальный коэффициент селективности α наблюдался при разделении смеси энантиомеров глутаминовой кислоты и составил 1,64. Такие сорбенты нестабильны в водно-органических и органических подвижных фазах, а способы их получения достаточно сложны.

Известен наногибридный функциональный сепарационный материал (патент США №6824776 от 30.11.2004) на основе силикагеля и наночастиц золота, модифицированных белковыми молекулами. Способ получения наногибридного материала включает предварительную модификацию наночастиц золота цитохромом С, который является органическим лигандом и содержит полипептидную цепь, и последующее закрепление наночастиц на поверхности силикагеля. Тем не менее, такой материал может быть использован только для определения узкого класса биомолекул.

Известен наногибридный функциональный сепарационный материал на основе модифицированных наночастиц металлов (патент РФ №2366502 от 10.09.2009), который по совокупности существенных признаков является прототипом заявляемого изобретения. В соответствии с патентом РФ №2366502 наногибридный сорбент для разделения органических веществ содержит носитель с адсорбированными наночастицами металла и ковалентно присоединенные к наночастицам серосодержащие лиганды. Основными недостатками наногибридного функционального сепарационного материала, раскрытого в патенте РФ №2366502, являются недостаточная стабильность и недостаточная эффективность сорбента, что связано с небольшой прочностью связи между носителем и наночастицами металла.

Задачами, на решение которых направлено заявленное изобретение, являются увеличение срока службы и увеличение эффективности сепарационного материала.

При решении поставленной задачи достигаются следующие технические результаты - увеличение стабильности сепарационного материала (в процессе работы материал длительно сохраняет свои сорбционные свойства); увеличение содержания наночастиц золота на поверхности носителя.

Указанные технические результаты достигаются при использовании наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц золота, включающего носитель с ковалентно закрепленными на нем наночастицами золота и серосодержащие органические лиганды, ковалентно закрепленные на поверхности наночастиц золота.

Наиболее стабильные сорбционные свойства наногибридный функциональный сепарационный материал проявляет в том случае, когда в качестве серосодержащих соединений используют серосодержащие аминокислоты, например L-цистеин, их производные и высокомолекулярные соединения - белки.

В качестве носителя могут быть использованы неорганические носители - оксиды кремния.

Наногибридный функциональный сепарационный материал может быть получен с использованием следующего способа: наночастицы золота ковалентно закрепляют на носителе, затем ковалентно закрепляют серосодержащие органические лиганды (например, серосодержащие аминокислоты, производные серосодержащих аминокислот) на поверхности наночастиц металла.

Для обеспечения ковалентного закрепления наночастиц золота носитель предварительно модифицируют кремнийорганическим соединением, например кремнийорганическим соединением, включающим группу -SH или -NH2.

Наночастицы золота закрепляют на носителе при обработке модифицированного носителя коллоидным раствором наночастиц.

Осуществление вышеописанной последовательности операций приводит к образованию ковалентных связей между носителем и наночастицами золота, а также между органическими серосодержащими лигандами и наночастицами золота, что значительно увеличивает стабильность получаемых материалов, эффективность их в качестве сорбентов, а также содержание лигандов в получаемом сепарационном материале. При этом наночастицы металла, предварительно ковалентно закрепленные на поверхности носителя, являются центрами взаимодействия с энантиомерами, что усиливает взаимодействие определяемого вещества с наногибридным функциональным сепарационным материалом.

Сущность изобретения поясняется иллюстративными материалами.

На фиг.1 показана общая схема получения наногибридного функционального сепарационного материала.

На фиг.2 показана хроматограмма разделения смеси аминопиридинов на колонке, заполненной наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином. Цифрами обозначены: 1-2-аминопиридин, 2-3-аминопиридин, 3-4-аминопиридин.

На фиг.3 показана хроматограмма разделения надолола на колонке, заполненной наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком.

На фиг.4 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу-прототипу с использованием оксида кремния, наночастиц золота и L-цистеина, микрофотографии получены методом сканирующей электронной микроскопии (СЭМ).

На фиг.5 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 1, микрофотографии получены методом СЭМ.

На фиг.6 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 2, микрофотографии получены методом СЭМ.

Изобретение иллюстрируется примерами альтернативных вариантов его выполнения.

Пример 1. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных L-цистеином

Получение носителя - модифицированного оксида кремния - проводят по схеме, представленной на фиг.1. Навеску оксида кремния (2 г) с диаметром частиц 5 мкм суспензируют в 300 мл свежеперегнанного толуола, доводят до кипения, добавляют 3-меркаптопропилтриэтоксисилан (МПТС) и кипятят в течение 4-х часов в атмосфере аргона, затем фильтруют. Полученный тиолированный силикагель суспензируют в 200 мл коллоидного раствора наночастиц золота со средним размером 10 нм (концентрация раствора 1011 частиц в одном миллилитре) при тщательном перемешивании с помощью механической верхнеприводной мешалки при комнатной температуре. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом, получая тиолированный оксид кремния с ковалентно закрепленными на нем наночастицами золота. Полученный оксид кремния суспензируют в 0,01 М растворе органического серосодержащего лиганда - L цистеина. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным серосодержащим органическим лигандом.

Пример 2. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином

Получение наногибридного функционального материала проводят аналогично примеру 1, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).

Пример 3. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком

Получение тиолированного оксида кремния с ковалентно закрепленными на нем наночастицами золота проводят аналогично примеру 1. Затем полученный модифицированный оксид кремния суспензируют в 0,1 М буферном растворе, содержащем органический высокомолекулярный серосодержащий лиганд - бычий сывороточный белок. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно буферным раствором и водой. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным высокомолекулярным органическим лигандом.

Пример 4. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, стабилизированных бычьим сывороточным белком.

Получение наногибридного функционального материала проводят аналогично примеру 3, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).

Наногибридные функциональные сепарационные материалы могут быть использованы следующим образом: материалом набивают хроматографическую колонку размером 4,6×100 мм под давлением 200-300 бар. Разделение на колонках, заполненных сорбентом, содержащим низкомолекулярные лиганды, осуществляют с использованием как водных, так и неводных подвижных фаз - в обращенно-фазовом, нормально-фазовом или полярно-органическом вариантах хроматографии. Разделение на колонках, заполненных сорбентом, содержащим высокомолекулярные лиганды, осуществляют с использованием водных подвижных фаз - в обращенно-фазовом варианте хроматографии.

Смесь производных аминопиридина разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином, в нормально-фазовом варианте ВЭЖХ с использованием подвижной фазы гексан/изопропанол (90/10 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 230 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.2. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.

Энантиомеры β-блокатора надолола разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком, в обращенно-фазовом варианте ВЭЖХ с использованием подвижной фазы фосфатный буферный раствор (рН 7,5; 20 мМ) / изопропанол (96/4 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 275 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.3. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.

Таким образом, во всех случаях был достигнут технический результат, заключающийся в увеличении стабильности сепарационного материала, который в процессе работы сохраняет свои сорбционные свойства не менее 1 года.

Использование полученных по заявленному способу стабильных наногибридных функциональных сепарационных материалов позволяет проводить разделение широкого круга соединений, в том числе разделение изомеров оптически активных соединений, в частности, относящихся к классам N-гидроксипропиламинов (β-блокаторов) и профенов, широко использующимся в фармакологии и медицине.

Предварительная модификация силикагеля 3-аминопропилтриэтоксисиланом или 3-меркаптопропилтриэтоксисиланом приводит к значительному увеличению степени покрытия силикагеля наночастицами золота за счет образования прочных ковалентных связей Au-S или ковалентных донорно-акцепторных связей Au-N. Данные СЭМ показали значительное увеличение степени покрытия поверхности силикагеля наночастицами золота, при этом максимальное покрытие наблюдалось в случае обработки силикагеля МПТС (фиг.4-6). По данным атомно-абсорбционной спектроскопии на модифицированной поверхности силикагеля при описанных в примерах 1 и 2 условиях обработки закрепляются практически все наночастицы золота, введенные в реакцию. Таким образом, при использовании заявленного способа получения наногибридных функциональных сепарационных материалов достигается технический результат, заключающийся в увеличении содержания наночастиц на поверхности носителя.

Похожие патенты RU2555030C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОГИБРИДНОГО ФУНКЦИОНАЛЬНОГО СЕПАРАЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МОДИФИЦИРОВАННОГО НОСИТЕЛЯ И МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦ МЕТАЛЛА 2012
  • Шпигун Олег Алексеевич
  • Мажуга Александр Георгиевич
  • Ананьева Ирина Алексеевна
  • Белоглазкина Елена Кимовна
  • Зык Николай Васильевич
  • Зефиров Николай Серафимович
  • Рудаковская Полина Григорьевна
  • Елфимова Яна Андреевна
RU2543170C2
НАНОГИБРИДНЫЕ ФУНКЦИОНАЛЬНЫЕ СЕПАРАЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2007
  • Шпигун Олег Алексеевич
  • Мажуга Александр Георгиевич
  • Ананьева Ирина Алексеевна
  • Шаповалова Елена Николаевна
  • Белоглазкина Елена Кимовна
  • Зык Николай Васильевич
  • Зефиров Николай Серафимович
RU2366502C2
СОРБЕНТ ДЛЯ ОПРЕДЕЛЕНИЯ СОЕДИНЕНИЙ ГИДРОФИЛЬНОЙ ПРИРОДЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Чернобровина Алла Валерьевна
  • Чикурова Наталья Юрьевна
  • Смоленков Александр Дмитриевич
  • Шпигун Олег Алексеевич
RU2730316C1
СОРБЕНТ ДЛЯ ОПРЕДЕЛЕНИЯ СОЕДИНЕНИЙ ИОННОЙ И ГИДРОФИЛЬНОЙ ПРИРОДЫ 2016
  • Затираха Александра Валерьевна
  • Чернобровкина Алла Валерьевна
  • Щукина Ольга Игоревна
  • Ужель Анна Станиславовна
  • Смоленков Александр Дмитриевич
  • Шпигун Олег Алексеевич
RU2638660C1
МОДИФИЦИРОВАННЫЕ УГЛЕРОДНЫЕ ПРОДУКТЫ И ИХ ПРИМЕНЕНИЕ 2005
  • Хэмпден-Смит Марк Дж.
  • Карусо Джеймс
  • Атанассова Паолина
  • Кирлидис Агатагелос
RU2402584C2
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ЭКСТРАКЦИИ АНТИОКСИДАНТОВ 2009
  • Гавриленко Михаил Алексеевич
  • Слижов Юрий Геннадьевич
  • Фаустова Жанна Владимировна
  • Дучко Мария Александровна
RU2415705C1
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ АМИНИРОВАННОГО ГРАФЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ ГИДРОКСИДОВ И ОКСИДОВ НИКЕЛЯ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2023
  • Рабчинский Максим Константинович
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Стручков Николай Сергеевич
  • Соломатин Максим Андреевич
  • Варежников Алексей Сергеевич
  • Червякова Полина Демидовна
  • Савельев Святослав Даниилович
  • Габрелян Владимир Сасунович
  • Улин Николай Владимирович
  • Кириленко Демид Александрович
  • Павлов Сергей Игоревич
  • Брунков Павел Николаевич
RU2814613C1
СПОСОБ ПОЛУЧЕНИЯ ЭНАНТИОСЕЛЕКТИВНОГО СОРБЕНТА 2008
  • Гавриленко Михаил Алексеевич
RU2363538C1
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ МАКРОМОЛЕКУЛЯРНЫХ КОМПОЗИТОВ ФУНКЦИОНАЛИЗИРОВАННЫХ ГРАФЕНОВ, МОДИФИЦИРОВАННЫХ КРАСИТЕЛЯМИ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2023
  • Рабчинский Максим Константинович
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Савельев Святослав Даниилович
  • Стручков Николай Сергеевич
  • Соломатин Максим Андреевич
  • Варежников Алексей Сергеевич
  • Червякова Полина Демидовна
  • Габрелян Владимир Сасунович
  • Улин Николай Владимирович
  • Павлов Сергей Игоревич
  • Брунков Павел Николаевич
RU2818998C1
МИКРОКОМПЛЕКС ДЛЯ ПРИМЕНЕНИЯ В ФОТОЭПИЛЯЦИИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СОДЕРЖАЩАЯ ЕГО КОМПОЗИЦИЯ 2015
  • Де Мигель Игнасио
  • Кидант Ромен
RU2681215C2

Иллюстрации к изобретению RU 2 555 030 C2

Реферат патента 2015 года НАНОГИБРИДНЫЙ ФУНКЦИОНАЛЬНЫЙ СЕПАРАЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МОДИФИЦИРОВАННОГО НОСИТЕЛЯ И МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦ МЕТАЛЛА

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота. Носитель модифицируют кремнийорганическим соединением, содержащим группу -SH или -NH2, обрабатывают коллоидным раствором золота. Затем ковалентно закрепляют серосодержащее органическое соединение на поверхности наночастиц золота. 2 н. и 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 555 030 C2

1. Способ получения наногибридного функционального сепарационного материала на основе модифицированного оксида кремния и модифицированных наночастиц золота, в котором выполняют следующие стадии: оксид кремния предварительно модифицируют кремнийорганическим соединением, содержащим группу -SH или -NF2, модифицированный носитель обрабатывают коллоидным раствором наночастиц золота и раствором серосодержащего органического соединения.

2. Способ по п.1, отличающийся тем, что серосодержащие органические соединения выбирают из группы, включающей тиолы, дисульфиды, серосодержащие аминокислоты и производные серосодержащих аминокислот.

3. Наногибридный функциональный сепарационный материал на основе модифицированного оксида кремния и модифицированных наночастиц золота, полученный способом, охарактеризованным в п.1 или 2.

RU 2 555 030 C2

Авторы

Шпигун Олег Алексеевич

Мажуга Александр Георгиевич

Ананьева Ирина Алексеевна

Белоглазкина Елена Кимовна

Зык Николай Васильевич

Зефиров Николай Серафимович

Рудаковская Полина Григорьевна

Елфимова Яна Андреевна

Даты

2015-07-10Публикация

2012-08-03Подача