Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением.
Известен способ определения качества покрытий, заключающийся в подготовке поверхности изделия под покрытие согласно ГОСТ 9.301-78, нанесении покрытия на подготовленную поверхность, исследовании основных параметров качества покрытия (прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость) согласно соответствующим методам контроля по ГОСТ 9.302-79.
Этот способ реализуется следующим образом. Поверхность изделия перед нанесением покрытия подвергается обработке согласно требованиям ГОСТ 9.301-78. Затем на изделие наносят требуемый тип покрытия. Контроль качества нанесенного покрытия на пористость, прочность сцепления покрытия с основным материалом, микротвердость, толщину осуществляют по ГОСТ 9.302-79 (прототип). Допускается производить контроль качества покрытия на образцах-свидетелях простой формы в случае сложной формы изделия и определения параметров качества покрытий на внутренних поверхностях изделия.
Недостатком этого способа является то, что для случая исследования перечисленных выше параметров качества покрытия на реальных изделиях эта процедура существенно затруднена, а зачастую просто невозможна для изделий сложной геометрии, что наиболее характерно для изделий, получаемых обработкой давлением. В случае же использования для исследования качества покрытия образцов-свидетелей простой формы, последние по напряженно-деформированному состоянию и физико-механическому состоянию исследуемой поверхности не соответствуют таковым для изделия после обработки давлением. При этом эти различия весьма существенны. Соответственно параметры качества покрытия, полученные на таких образцах-свидетелях, могут значительно отличаться от соответствующих параметров реальных изделий. Этот недостаток становится еще более существенным, когда требуется определить качество покрытий на внутренних поверхностях изделий, а также когда происходит разработка новых изделий и технологий обработки давлением с последующим нанесением покрытий, где исследования наиболее целесообразно производить на модельных образцах.
Технический результат изобретения - повышение точности (достоверности) определения параметров качества разнофункциональных покрытий на изделиях, получаемых обработкой давлением.
Технический результат достигается тем, что в способ определения качества покрытий на изделиях, полученных обработкой давлением, заключающийся в подготовке поверхности образца-свидетеля согласно ГОСТ 9.301-78, нанесении покрытий на образец-свидетель, исследовании основных параметров качества покрытий на образце-свидетеле: прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость, согласно соответствующим методам контроля по ГОСТ 9.302-79, добавляется следующее: образец-свидетель перед подготовкой поверхности по ГОСТ 9.301-78 и нанесением покрытий на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие, затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия.
В этом случае напряженно-деформированнное состояние образца-свидетеля и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением и последующей поверхностной обработки, при которых получено изделие. После этого исследуемая поверхность образца-свидетеля проходит обработку согласно ГОСТ 9.301-78 и на нее наносят конкретный вид покрытия.
Исследование основных параметров качества покрытий (прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость) проводят на образце-свидетеле согласно соответствующим методам контроля по ГОСТ 9.302-79.
Пример реализации предлагаемого способа.
Требуется определить качество вакуумного ионно-плазменного износостойкого покрытия из нитрида хрома на внутренней поверхности полости диаметром 10 мм, глубиной 18,5 мм, в цилиндрической детали диаметром 20 мм и высотой 30 мм. Полость в детали из стали 45 получена методом холодного обратного вылавливания на гидравлическом прессе. Скорость выдавливания (скорость деформирования) составляла 1,67 мм/с.
Способ осуществляется следующим образом.
1. Из материала изделия изготавливается образец-свидетель цилиндрической формы диаметром 15 мм и высотой 15 мм. Это обеспечивает структурное соответствие материала изделия и образца-свидетеля. Величина торцевой поверхности образца-свидетеля достаточна для проведения испытаний по определению параметров качества покрытия по методам ГОСТ 9.302-79.
2. Образец-свидетель подвергают свободной осадке между параллельными плитами на гидравлическом прессе со скоростью деформирования 0,83 мм/с. Образец-свидетель осаживают на 9,5 мм. Схема и деформационно-скоростные параметры осадки соответствуют параметрам процесса выдавливания исследуемой полости. В этом случае напряженно-деформированное состояние образца и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением, при котором получено изделие.
3. Исследуемая поверхность образца-свидетеля после осадки подвергается комплексу обработки, соответствующему комплексу поверхностной обработки реального изделия после обработки давлением: проводят термическую обработку на HRC 45; полируют поверхность до Ra=0,16 мкм. Это обеспечивает идентичность физико-механического состояния исследуемой поверхности образца-свидетеля и поверхности реального изделия пред нанесением покрытия.
4. Производится подготовка исследуемой поверхности образца-свидетеля под покрытие согласно ГОСТ 9.301-78.
5. На исследуемую поверхность образца-свидетеля наносят износостойкое ионно-плазменное покрытие из нитрида хрома совместно с исследуемыми деталями.
6. На исследуемой поверхности образца-свидетеля определяют параметры качества покрытия согласно методам по ГОСТ 9.302-79.
Таким образом, заявленный способ определения качества покрытий позволяет значительно повысить точность определения параметров качества покрытий на изделиях, полученных обработкой давлением, так как при реализации способа в наибольшей степени выполнены структурное и деформационное соответствие образца-свидетеля и реального изделия и идентичность физико-механического состояния их поверхностей перед нанесением покрытия. Особенно это важно при нанесении тонких покрытий физическими методами (например, ионно-плазменные покрытия), когда физико-механическое состояние поверхности и напряженно-деформированное состояние поверхностной зоны изделия существенно влияют на механизмы формирования покрытий.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЯ НА ВНУТРЕННЮЮ ПОВЕРХНОСТЬ ИЗДЕЛИЯ МАЛОГО СЕЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2354757C2 |
Выравнивающая добавка для пирофосфатных электролитов меднения | 1985 |
|
SU1305198A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ СКАЛЫВАНИЮ ГАЛЬВАНОПОКРЫТИЯ | 1999 |
|
RU2200310C2 |
СПОСОБ ОЦЕНКИ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ВЫСОКОВЯЗКИХ ЛИСТОВЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ | 2015 |
|
RU2598972C1 |
СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРОВАННОГО ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВОГО СПЛАВА С ВАКУУМНО-ПЛАЗМЕННЫМ ПОКРЫТИЕМ | 2014 |
|
RU2597451C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЗОНЫ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПОД ИЗЛОМОМ В ОБРАЗЦЕ | 2012 |
|
RU2516391C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ С ТВЕРДЫМ ЭЛЕКТРОХИМИЧЕСКИМ ХРОМОВЫМ ПОКРЫТИЕМ | 2000 |
|
RU2180022C2 |
Водный электролит меднения | 1982 |
|
SU1113429A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТВЕРДОСТИ ПОКРЫТИЯ НА ИЗДЕЛИИ | 2018 |
|
RU2698474C1 |
СПОСОБ ВЫЯВЛЕНИЯ СТРУКТУРЫ НА ПОВЕРХНОСТИ МАТЕРИАЛА ИЗДЕЛИЯ | 2006 |
|
RU2331864C1 |
Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением. Способ определения качества покрытий на изделиях, получаемых обработкой давлением, заключается в том, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301.78 и нанесением покрытия на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие. Затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия. В этом случае напряженно-деформированное состояние образца и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением и последующей поверхностной обработки, при которых получено изделие. Техническим результатом является повышение точности (достоверности) определения параметров качества разнофункциональных покрытий на изделиях, получаемых обработкой давлением.
Способ определения качества покрытий на изделиях, полученных обработкой давлением, заключающийся в подготовке поверхности образца-свидетеля согласно ГОСТ 9.301-78, нанесении покрытий на образец-свидетель, исследовании основных параметров качества покрытий на образце-свидетеле: прочность сцепления покрытия с основным материалом, микротвердость, толщина, пористость, согласно соответствующим методам контроля по ГОСТ 9.302-79, отличающийся тем, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301-78 и нанесением покрытий на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие, затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия.
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Покрытия металлические и неметаллические неорганические | |||
Методы контроля, взамен: ГОСТ 9.302-79, 01.01.1990 | |||
Способ испытания жаропрочных и иных металлов на технологическую пластичность | 1960 |
|
SU139126A1 |
Образец для исследования напряженно-деформированного состояния | 1981 |
|
SU946707A1 |
US 2011138926 A1 16.06.2011 |
Авторы
Даты
2015-07-27—Публикация
2013-12-11—Подача