Изобретение относится к области металлургии, в частности к составам сплавов на основе титана, используемых для абсорбции и десорбции водорода, с целью применения его в энергетических устройствах, потребляющих водород, и химических процессах.
Перспективным аккумулятором и источником водорода среди сплавов на основе титана является интерметаллид TiFe, характеризующийся доступностью и низкой стоимостью [1, стр.259, 265].
Недостатком данного сплава является то, что он проявляет очень низкую активность на начальной стадии гидрирования, что делает необходимым проведение сложной дегазации сплава TiFe, предшествующей реакции гидрирования.
Из уровня техники известна дегазационная обработка состоит из прогрева сплава при 350 оС или при еще более высокой температуре в течение нескольких часов; при этом, в рабочей камере, где проводится дегазация, должен быть создан вакуум с остаточным давлением ~ 0,133 Па (10-3 мм рт. ст.) или при еще меньшим остаточным давлении.
Кроме того, даже если гидрирование начинается, сплав TiFe проявляет очень медленную скорость реакции с водородом, и это может занимать от 3-х до 10-ти недель до завершения реакции гидрирования [2].
Известен сплав на основе интерметаллида TiFe с медью, состав которого описывается формулой TiFe0,9Cu0,1 [2]. Там же указывается, что этот сплав значительно усовершенствован по сравнению с TiFe более быстрым достижением начала гидрирования и большей скоростью реакции с водородом. Химический состав сплава TiFe0,9Cu0,1, принятый за прототип, следующий, мас. %: титан 45,8-45,9; медь 6,0-6,1; железо - остальное. Его сорбционная емкость при десорбции водорода (40 0С) составляет - 0,938 мас. % Н2 [3, стр.186], что соответствует объему водорода - 106 дм3Н2/кг сплава.
Сплав TiFe0,9Cu0,1 (прототип) имеет очень небольшую сорбционную емкость, о чем также указывается в патенте [2].
Задачей изобретения является определение времени активации сплава и повышение его сорбционной емкости.
Поставленный технический результат достигается тем, что сплав, содержащий титан, железо и медь, дополнительно содержит алюминий, кальций и магний при следующем соотношении компонентов, мас. %: титан 46,3-49,0; медь 0,14-4,5; алюминий 0,15-4,7; кальций 0,03-1,0; магний 0,03-0,9; железо - остальное.
Предварительно была изготовлена лигатура, в которую полностью вошли алюминий, медь, кальций и магний. Предлагаемый сплав может быть выражен формулой TiFe1-ХАХ, где А - лигатура, имеющая следующий состав компонентов, мас. %: медь 40-42; кальций 8-10; магний 8-9; алюминий - остальное; X=0,01 ÷ 0,3.
В таблице приведены составы сплава и его сорбционные свойства.
Повышение сорбционной емкости сплава осуществляется за счет введения в сплав сильных гидридообразующих компонентов, таких как кальций и магний.
Составы сплава были приготовлены сплавлением исходных компонентов, включая лигатуру, в электродуговой печи с нерасходуемым вольфрамовым электродом в атмосфере предварительно очищенного аргона при остаточном давлении 30 - 40 кПа.
Непосредственно перед активацией и гидрированием куски сплава дробились до кусочков размером 0,5 - 3,0 мм, после чего загружались в реактор.
Активация сплава состояла при выдержке его в атмосфере водорода, поданного в ректор, для гидрирования под давлением 3 МПа и температуре 20 оС. Активационный период определялся временем от начала обработки сплава водородом до разогрева реактора.
Для определения количеств поглощенного водорода при 20 оС использован метод прямой абсорбции водорода, согласно которому эти количества определяются по уравнению состояния газа в зависимости от изменения его давления в системе известного объема. Средством измерения давления являлся образцовый манометр типа МО модели 1231 (класс точности - 0,4). Для определения расхода газа при десорбции водорода (50 оС) применялся барабанный газовый счетчик типа ГСБ-400 (класс точности - 1,0). Это означает, что давление измерялось с допускаемой погрешностью не более ± 0,4%, а расход газа с погрешностью не более ± 1,0%.
Источники информации
1. А. С. Черников, В. Н. Фадеев, В. И. Савин. Гидридные материалы как аккумуляторы водорода //Атомно-водородная энергетика и технология. - Вып. 3. - М.: Атомиздат, 1980, 272 с.
2. U.S. Patent 4370163, С22С 14/00, 1983. Moriwaki et al. Hydrogen storage alloy and process for making same.
3. Сплавы-накопители водорода. Справ. изд.: Б. А. Колачев, Р. Е. Шалин, А. А. Ильин. - М.: Металлургия, 1995. - 384 с.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ, АККУМУЛИРУЮЩИЙ ВОДОРОД | 2013 |
|
RU2536616C1 |
СПЛАВ ДЛЯ ОБРАТИМОГО ПОГЛОЩЕНИЯ ВОДОРОДА | 2014 |
|
RU2561543C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1992 |
|
RU2022045C1 |
Способ получения материала для абсорбции и десорбции водорода | 2022 |
|
RU2793680C1 |
ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ | 2022 |
|
RU2793657C1 |
ГЕТЕРОГЕННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1996 |
|
RU2092604C1 |
Высокопрочный деформируемый сплав на основе алюминия системы Al-Zn-Mg-Cu и изделие из него | 2015 |
|
RU2613270C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2022 |
|
RU2800435C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2011 |
|
RU2447173C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, ИЗДЕЛИЕ ИЗ ЭТОГО СПЛАВА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2001 |
|
RU2210614C1 |
Изобретение относится к области металлургии, в частности к сплавам на основе титана, используемым для абсорбции и десорбции водорода, и может быть использовано в транспортных и энергетических устройствах. Сплав содержит, мас.%: титан 46,3-49,0; медь 0,14-4,5; алюминий 0,15-4,7; кальций 0,03-1,0; магний 0,03-0,9; железо - остальное. Увеличивается активность сплава и его сорбционная емкость. 1 табл.
Сплав на основе титана, содержащий медь и железо, отличающийся тем, что он дополнительно содержит алюминий, кальций и магний при следующем соотношении компонентов, мас. %:
US 4370163 A, 25.01.1983 | |||
СПЛАВ НА ОСНОВЕ ТИТАНА | 1990 |
|
RU1746730C |
МАТЕРИАЛ ИЗ ТИТАНОВОГО СПЛАВА, ИМЕЮЩИЙ ВЫСОКУЮ СТОЙКОСТЬ К АБСОРБЦИИ ВОДОРОДА | 2003 |
|
RU2291215C2 |
JP 3191040 A, 21.08.1991 | |||
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
Авторы
Даты
2015-07-27—Публикация
2014-05-12—Подача