СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУБ Российский патент 2015 года по МПК C21D8/10 C21D9/08 

Описание патента на изобретение RU2564770C2

Изобретение относится к области металлургии, в частности к технологии упрочнения труб нефтяного сортамента из микролегированных сталей непосредственно в процессе горячей деформации.

Известен способ термомеханической обработки труб нефтяного сортамента из углеродистых и микролегированных сталей, включающий предварительную деформацию, выдержку на воздухе, нагрев, окончательную деформацию и регулируемое охлаждение, при этом нагрев совмещают с окончательной деформацией (патент РФ №2387718, опубл. 27.04.2010). Недостатком способа является то, что результат от применения возможен только при точной выдержке параметров степени и скорости деформации и температурного режима, что при изменении темпа проката во время настройки, пуска оборудования, внеплановых задержек в процессе деформации труднодостижимо, так как изменяются скорость деформации и температура.

Известен способ прокатки труб с термомеханической обработкой, заключающийся в нагреве, прошивке заготовки, охлаждении водой с наружной поверхности давлением не менее 15 ати, деформации в непрерывном стане со степенью деформации не менее 50% и охлаждением во время деформации до температуры 800-900°C с наружной поверхности валками и потоками охлаждающей воды и с внутренней поверхности предварительно охлажденной до 150-250°C оправкой, индукционном нагреве и окончательной деформации в редукционном стане (патент РФ №2291903, опубл. 20.01.2007). Недостатком способа является его ограниченная применимость только для трубопрокатных агрегатов с непрерывным станом и нестабильность получаемых свойств в случае изготовления труб из среднеуглеродистых микролегированных ванадием сталей. Нагрев, следующий после деформации и охлаждения в непрерывном стане, приводит к рекристаллизации мелкозернистой структуры, что отрицательно влияет на упрочняющие свойства металла труб.

Наиболее близким к заявляемому изобретению является способ термомеханической обработки, включающий предварительную деформацию, выдержку на воздухе, нагрев до температуры 800-870°C и окончательную деформацию с ускоренным регулируемым охлаждением до температуры 720-760°C, которое производят в процессе многократной горячей деформации в заневоленном состоянии со средней скоростью охлаждения 40-60°C/с в очаге деформации и 20-30°C/с во время междеформационных пауз (патент РФ №2245375, опубл. 27.01.2005). Недостатком способа по прототипу является низкая температура нагрева под окончательную деформацию, при которой карбиды ванадия в микролегированной ванадием стали растворяются не полностью, из-за чего не достигается упрочняющий эффект от дисперсных выделений. В связи с тем, что структурные превращения не протекают мгновенно во время деформации и ускоренного охлаждения, проводимого на 80-110°C за 2-4 с (как следует из описания), и продолжаются после выхода труб из стана, то это приводит к нарушению геометрического профиля трубы (возникает овальность), концевой кривизне и прямолинейности при изготовлении труб с дополнительными требованиями к ГОСТ 633-80. Также не учтена возможность того, что наружном ускоренном охлаждении охлаждаются до указанной температуры только наружные слои металла трубы, которые впоследствии отогреваются внутренними (менее охлажденными), что снижает эффект термомеханической обработки.

Технической задачей, на решение которой направлено предлагаемое изобретение, является разработка способа термомеханической обработки труб нефтяного сортамента из среднеуглеродистых сталей, микролегированных ванадием, обеспечивающего применение его в редукционном, калибровочном станах (расширение области применения термомеханической обработки), повышение прочностных свойств, стабильность механических свойств, минимизация отклонений по геометрическим параметрам готовых труб.

Техническая задача решается тем, что в способе термомеханической обработки труб, включающем предварительную деформацию, нагрев, окончательную деформацию с регулируемым охлаждением и последующим охлаждением на воздухе, согласно изобретению термомеханическая обработка проводится на стадии окончательной деформации в редукционном, калибровочном стане, при этом окончательную деформацию начинают при температуре 850-920°C, во время деформации осуществляют ускоренное регулируемое охлаждение за счет контакта с деформирующими валками и организованными потоками воды в объеме не менее 15 м3/ч, направленными, касательно валка, на деформируемую трубу. Охлаждение осуществляют до температуры не более 880°C на выходе из стана. После деформации в стане трубу охлаждают на воздухе в течение 5-13 секунд до контрольной температуры не более 860°C.

Так как деформирование в калибровочном, редукционном стане является окончательными этапами горячей деформации, то при таких условиях термомеханическая обработка создает окончательную структуру.

Выбранная температура начала окончательной деформации 850-920°C обеспечивает выделение основной части карбидов ванадия непосредственно во время деформации в стане, а проводимое одновременное ускоренное регулируемое охлаждение водой, объем которой определен экспериментально не менее 15 м3/ч, подаваемой на трубу касательно валка, обеспечивает охлаждение трубы до температуры не более 880°C, что приводит к созданию микроструктуры металла трубы с дисперсными частицами. Увеличение температуры более 880°C не обеспечивает получение эффекта упрочнения за счет снижения дисперсности частиц.

Дополнительный контроль температуры производят через 5-13 с после выхода трубы из стана в связи с тем, что температура охлажденной наружной поверхности труб повышается за счет отогрева внутренними (менее охлажденными) слоями металла трубы, особенно при производстве толстостенных труб. При соблюдении параметров термомеханической обработки (в том числе времени дополнительного контроля) обеспечивается указанное ограничение температуры - не более 860°C, т.е. подогрева после деформации не происходит, что позволяет достичь эффекта упрочнения.

Выбранный способ охлаждения исключает возможность искривления труб, их овализацию, что делает возможным применение способа термомеханической обработки для изготовления труб особой точности и с дополнительными требованиями по геометрическим размерам.

Предлагаемый и известный способ опробованы в промышленных условиях. Трубные заготовки диаметром 150 мм выплавлены в 150-тонных дуговых сталеплавильных печах из стали с химическим составом, приведенным в таблице 1. Из трубной заготовки в условиях ОАО «СинТЗ» изготовлены горячедеформированные трубы размерами 73,0×5,5 мм и 88,9×13,0 мм на трубопрокатном агрегате с непрерывным станом ТПА-80: термомеханическая обработка проводилась на редукционном стане. Также изготовлены трубы размерами 146,1×7,7 мм на трубопрокатном агрегате с автомат-станом ТПА-140: термомеханическая обработка производилась на калибровочном стане. Изготовление труб производилось с дополнительными требованиями по геометрическим размерам. Дополнительно произведен анализ на соответствие требованиям ГОСТ 633-80.

Результаты исследования свойств труб приведены в таблице 1. Микроструктура горячедеформированной трубы размером 73,0×5,5 мм, изготовленной с использованием предлагаемого способа, приведена на рис.1. Таким образом, предлагаемый способ обработки позволяет получать для ванадиевых сталей структуру, насыщенную дисперсными выделениями карбида ванадия. В сравнении с прототипом, данный способ позволяет изготавливать трубы особой точности и с дополнительными требованиями по геометрическим размерам.

Таблица 1 Способ Диаметр труб Марка стали Содержание элементов, % масс. Механические свойства Брак по геометрическим размерам (овальность, концевая кривизна, отклонение от прямолинейности), % C Mn V δв, МПа δт, МПа δ5, % по нормам ГОСТ 633-80 по нормам ТТ НКТ Заявляемый 73 38Г2СФ (Mn1.20-1.40%, V 0.10-0.13%) 0,40 1,30 0,05 745 594 28 1-2 4-6 89 743 588 27 146 740 580 27 73 ДФ (V 0.04-0.08%) 0,47 0,75 0,06 707 473 25 1-2 4-6 89 702 465 22 146 696 461 24 Прототип 73 38Г2СФ 0,40 1,30 0,05 751 601 25 6-8 20-34 89 721 553 26 114 749 595 24 73 ДФ 0,47 0,75 0,06 710 486 18 6-8 25-36 89 689 424 23 146 703 469 23

Похожие патенты RU2564770C2

название год авторы номер документа
СПОСОБ ПРОКАТКИ ТРУБ С ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ 2014
  • Грехов Александр Игоревич
  • Жукова Светлана Юльевна
  • Жуков Анатолий Иванович
  • Овчинников Дмитрий Владимирович
  • Пономарев Николай Георгиевич
  • Соловьева Елена Ивановна
  • Тихонцева Надежда Тахировна
RU2580773C2
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2004
  • Брижан А.И.
  • Бодров Ю.В.
  • Горожанин П.Ю.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.
  • Пышминцев И.Ю.
  • Салтыков А.А.
RU2245375C1
СПОСОБ ПРОКАТКИ ТРУБ С ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ 2005
  • Бодров Юрий Владимирович
  • Грехов Александр Игоревич
  • Горожанин Павел Юрьевич
  • Бодров Андрей Юрьевич
  • Жукова Светлана Юльевна
  • Кривошеева Антонина Андреевна
  • Лефлер Михаил Ноехович
  • Марченко Леонид Григорьевич
  • Пумпянский Дмитрий Александрович
  • Салтыков Алексей Александрович
  • Усов Владимир Антонович
  • Черных Елена Сергеевна
RU2291903C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ 2008
  • Сафьянов Анатолий Васильевич
  • Федоров Александр Анатольевич
  • Марков Дмитрий Всеволодович
  • Осадчий Владимир Яковлевич
  • Еремин Виктор Николаевич
  • Усанов Константин Александрович
  • Маковецкий Александр Николаевич
  • Лапин Леонид Игнатьевич
  • Логовиков Валерий Андреевич
  • Баричко Владимир Сергеевич
RU2387718C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ 2000
  • Брижан А.И.(Ru)
  • Грехов А.И.(Ru)
  • Жукова С.Ю.(Ru)
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.(Ru)
  • Москаленко В.А.(Ru)
  • Поповцев Ю.А.(Ru)
  • Пузенко В.И.(Ru)
  • Степашин А.М.(Ru)
  • Тетюева Т.В.(Ru)
  • Шафигин З.К.(Ru)
RU2163643C1
ТРУБА НЕФТЯНОГО СОРТАМЕНТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2007
  • Бодров Юрий Владимирович
  • Брижан Анатолий Илларионович
  • Горожанин Павел Юрьевич
  • Грехов Александр Игоревич
  • Жукова Светлана Юльевна
  • Зырянов Владислав Викторович
  • Кривошеева Антонина Андреевна
  • Лефлер Михаил Ноехович
  • Мануйлова Ирина Ивановна
  • Марченко Леонид Григорьевич
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Степашин Андрей Михайлович
  • Суворов Александр Вадимович
  • Шлейнинг Людмила Ивановна
  • Якушев Евгений Валерьевич
RU2352647C1
Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Рогова Ксения Владимировна
  • Павлов Александр Александрович
  • Родионова Ирина Гавриловна
RU2719618C1
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ХЛАДОСТОЙКИХ И КОРРОЗИОННО-СТОЙКИХ ТРУБ РАЗМЕРОМ 377×9-16 И 426×9-18 мм НА ТПУ 8-16 C ПИЛИГРИМОВЫМИ СТАНАМИ С ПОВЫШЕННЫМИ ТРЕБОВАНИЯМИ ПО КРИВИЗНЕ 2013
  • Сафьянов Анатолий Васильевич
  • Федоров Александр Анатольевич
  • Воронин Анатолий Андреевич
  • Осадчий Владимир Яковлевич
  • Головинов Валерий Александрович
  • Пашнин Владимир Петрович
  • Климов Николай Петрович
  • Баричко Владимир Сергеевич
  • Матюшин Александр Юрьевич
  • Бубнов Константин Эдуардович
  • Сафьянов Александр Анатольевич
  • Еремин Виктор Николаевич
RU2542150C2
СПОСОБ ПРОКАТКИ ТРУБ ДИАМЕТРОМ ОТ 273 ДО 426 ММ НА ТРУБОПРОКАТНЫХ УСТАНОВКАХ С ПИЛИГРИМОВЫМИ СТАНАМИ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ МАРОК СТАЛИ С ПОВЫШЕННЫМИ ТРЕБОВАНИЯМИ К УДАРНОЙ ВЯЗКОСТИ 2012
  • Еремин Виктор Николаевич
  • Сафьянов Анатолий Васильевич
  • Осадчий Владимир Яковлевич
  • Пашнин Владимир Петрович
  • Климов Николай Петрович
  • Чеботов Александр Юрьевич
  • Бубнов Константин Эдуардович
  • Маковецкий Александр Николаевич
  • Усанов Константин Александрович
  • Баричко Владимир Сергеевич
RU2523396C1
Способ изготовления труб нефтяного сортамента (варианты) 2017
  • Гагаринов Вячеслав Алексеевич
  • Тихонцева Надежда Тахировна
  • Засельский Евгений Михайлович
  • Воротников Евгений Викторович
  • Жукова Светлана Юльевна
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
  • Соловьева Елена Ивановна
  • Монастырский Денис Александрович
  • Пышминцев Игорь Юрьевич
RU2686405C1

Иллюстрации к изобретению RU 2 564 770 C2

Реферат патента 2015 года СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУБ

Изобретение относится к области металлургии, в частности к технологии упрочнения труб нефтяного сортамента из микролегированных сталей непосредственно в процессе горячей деформации. Техническим результатом является повышение прочностных свойств, стабильности механических свойств, минимизация отклонений по геометрическим параметрам готовых труб, а также расширение области применения термомеханической обработки. Для достижения технического результата трубу для окончательной деформации нагревают до температуры 850-920°C, окончательную деформацию производят одновременно с ускоренным регулируемым охлаждением потоком воды объемом не менее 15 м3/ч и направленном на деформируемую трубу касательно валка, до температуры наружной поверхности трубы не более 880°C, после выхода трубы из стана ее дополнительно охлаждают на воздухе в течение 5-13 с до температуры не более 860°C. 3 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 564 770 C2

1.Способ термомеханической обработки труб нефтяного сортамента, включающий предварительную деформацию, нагрев, окончательную деформацию и ускоренное регулируемое охлаждение, отличающийся тем, что нагрев под окончательную деформацию производят до температуры 850-920°C, а окончательную деформацию производят в редукционном калибровочном стане одновременно с ускоренным регулируемым охлаждением потоком воды до температуры наружной поверхности трубы не более 880°C.

2. Способ по п.1, отличающийся тем, что поток воды направляют на трубу по касательной к деформирующему валку.

3. Способ по п.1 или 2, отличающийся тем, что объем потока воды составляет не менее 15 м3/ч.

4. Способ по п.1, отличающийся тем, что после выхода трубы из стана дополнительно осуществляют охлаждение на воздухе в течение 5-13 с до температуры не более 860°C.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564770C2

СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2004
  • Брижан А.И.
  • Бодров Ю.В.
  • Горожанин П.Ю.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.
  • Пышминцев И.Ю.
  • Салтыков А.А.
RU2245375C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ 2008
  • Сафьянов Анатолий Васильевич
  • Федоров Александр Анатольевич
  • Марков Дмитрий Всеволодович
  • Осадчий Владимир Яковлевич
  • Еремин Виктор Николаевич
  • Усанов Константин Александрович
  • Маковецкий Александр Николаевич
  • Лапин Леонид Игнатьевич
  • Логовиков Валерий Андреевич
  • Баричко Владимир Сергеевич
RU2387718C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПАРОПЕРЕГРЕВАТЕЛЬНЫХ ТРУБ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2002
  • Подкустов В.П.
RU2218428C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ 2000
  • Брижан А.И.(Ru)
  • Грехов А.И.(Ru)
  • Жукова С.Ю.(Ru)
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.(Ru)
  • Москаленко В.А.(Ru)
  • Поповцев Ю.А.(Ru)
  • Пузенко В.И.(Ru)
  • Степашин А.М.(Ru)
  • Тетюева Т.В.(Ru)
  • Шафигин З.К.(Ru)
RU2163643C1
ЕР 1918400 В1, 06.07.2011.

RU 2 564 770 C2

Авторы

Грехов Александр Игоревич

Овчинников Дмитрий Владимирович

Тихонцева Надежда Тахировна

Жукова Светлана Юльевна

Черных Елена Сергеевна

Горожанин Павел Юрьевич

Бодров Андрей Юрьевич

Даты

2015-10-10Публикация

2013-07-09Подача