СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ Российский патент 2001 года по МПК C21D8/10 

Описание патента на изобретение RU2163643C1

Изобретение направлено на совершенствование технологии упрочнения труб нефтяного сортамента из микролегированных ниобием (Nb) и/или ванадием (V) сталей непосредственно в линии трубопрокатной установки.

Наиболее близким аналогом к заявленному изобретению по технической сущности и достигаемому результату является способ термической обработки труб из углеродистых сталей (марок 20, "Д") и низколегированных сталей (типа 37Г2С), заключающийся в том, что трубу охлаждают водой по выходу из последней клети стана, при этом охлаждение наружной поверхности трубы начинают с 800-840oC в течение 3-5 с со средней скоростью 30-40 град/с за 6-10 циклов, длительность интенсивного охлаждения в цикл составляет 0,2-0,3 с паузами между циклами 0,15-0,2 с [патент РФ N 2112052, Кл. C 21 D 9/08, опубл. 27.05.98 г.].

Недостатком этого способа является то, что он непригоден для упрочнения труб из сталей, микролегированных ниобием и/или ванадием с пониженным содержанием дефицитного в России марганца. При заявленных в способе режимах нагрева и охлаждения проявляется влияние малых добавок этих элементов только на повышение прокаливаемости и не используются эффекты торможения рекристаллизации аустенита при горячей деформации и дисперсионного твердения. В результате в конечной структуре стали после интенсивного охлаждения вместо перлита образуется верхний бейнит, что приводит к сильному упрочнению, но одновременно резко снижаются пластические характеристики.

Задачей настоящего изобретения является разработка способа изготовления труб нефтяного сортамента из микролегированной ниобием и/или ванадием стали, который обеспечивает реализацию уникального влияния малых добавок этих элементов на одновременное повышение прочности, пластичности и хладостойкости стали путем совершенствования параметров охлаждения труб после предварительной и окончательной горячей деформации.

Поставленная задача решается тем, что в способе изготовления, включающем предварительную горячую деформацию, охлаждение, нагрев, окончательную деформацию и охлаждение, согласно изобретению после предварительной горячей деформации трубы подвергают охлаждению на воздухе в течение 55-60 с до 735-770oC, нагрев под окончательную деформацию ведут до 810-850oC, а после окончательной деформации осуществляют охлаждение водой в течение 1,5-2,0 с со средней скоростью 20-25 град/с с дальнейшим охлаждением на воздухе. Такие параметры горячей деформации и охлаждения создают условия для эффективного влияния ниобия и ванадия на процессы измельчения зерна и упрочнения за счет дисперсионного твердения.

В процессе охлаждения после предварительной горячей деформации на воздухе в течение 55-60 с с температуры 1000-1500oC до температуры 735-770oC происходит выделение ниобия (около 50% от абсолютного содержания в стали) в виде частиц карбидов и карбонитридов. При последующем нагреве до 810-850oC за счет температурного гистерезиса процессов выделения - растворения не происходит растворения образовавшихся карбидов и карбонитридов. Дисперсные частицы карбидов и карбонитридов тормозят движение дислокаций и границ при нагреве и во время междеформационных пауз при окончательной деформации, что приводит к сильному измельчению аустенитного зерна.

Повышение температуры нагрева свыше 850oC ведет к растворению карбидов и частично карбонитридов ниобия и снижению эффекта измельчения зерен аустенита, а нижний интервал температур нагрева под окончательную деформацию ограничен прочностными характеристиками трубопрокатного оборудования.

В процессе ускоренного охлаждения после окончательной прокатки в течение 1,5-2,0 с со средней скоростью 20-25 град/с увеличивается число активных центров зарождения феррита, что приводит к дальнейшему измельчению конечной ферритоперлитной структуры, а при окончательном охлаждении на воздухе внутри феррита выделяются чрезвычайно дисперсные (размеры до 5 нм) частицы карбидов и карбонитридов ниобия и ванадия, обуславливающие дисперсионное упрочнение стали. Повышение скорости и длительность охлаждения свыше 2,0 с и 20-25 град/с соответственно приводит к образованию высокоуглеродистого верхнего бейнита и к охрупчиванию стали.

Предлагаемый способ осуществляется следующим образом.

Трубы-заготовки после предварительной деформации при 1000-1050oC в непрерывном стане охлаждают на воздухе в течение 55-60 с до 735-770oC. После нагрева в индукционных установках до 800-850oC производится окончательная деформация в многоклетьевом редукционном стане с суммарной степенью деформации 20-30%. По выходу из последней клети стана трубы охлаждают водой в течение 1,5-2,0 с со средней скоростью 20-25 град/с до 680-720oC, дальнейшее охлаждение ведут на воздухе.

Предлагаемый и известный способы были осуществлены в промышленных условиях в линии трубопрокатного агрегата ТПА-80 ОАО "Синарский трубный завод" при прокатке насосно-компрессорных труб наружным диаметром 73 мм, толщиной стенки 5,5 мм из двух марок стали, микролегированных ниобием (0,45% C; 0,82% Mn и 0,045% Nb) и ниобием с ванадием (0,30% C; 0,60% Mn; 0,032% Nb и 0,052% V).

Результаты исследования свойств труб приведены в таблице.

Как видно из таблицы, обработка по предлагаемому способу позволяет из низкомарганцовистой стали, содержащей малые добавки Nb и Nb+V получать трубы нефтяного сортамента группы прочности "Е" и "Л" (ГОСТ 633-80) повышенной хладостойкости, что очень важно для северных районов России.

Похожие патенты RU2163643C1

название год авторы номер документа
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2004
  • Брижан А.И.
  • Бодров Ю.В.
  • Горожанин П.Ю.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.
  • Пышминцев И.Ю.
  • Салтыков А.А.
RU2245375C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 1999
  • Брижан А.И.(Ru)
  • Грехов А.И.(Ru)
  • Жукова С.Ю.(Ru)
  • Жуков А.И.(Ru)
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.(Ru)
  • Поповцев Ю.А.(Ru)
  • Усов В.А.(Ru)
  • Шепелев А.В.(Ru)
RU2153011C1
СПОСОБ ПРОКАТКИ ТРУБ С ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ 2014
  • Грехов Александр Игоревич
  • Жукова Светлана Юльевна
  • Жуков Анатолий Иванович
  • Овчинников Дмитрий Владимирович
  • Пономарев Николай Георгиевич
  • Соловьева Елена Ивановна
  • Тихонцева Надежда Тахировна
RU2580773C2
ТРУБА НЕФТЯНОГО СОРТАМЕНТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2007
  • Бодров Юрий Владимирович
  • Брижан Анатолий Илларионович
  • Горожанин Павел Юрьевич
  • Грехов Александр Игоревич
  • Жукова Светлана Юльевна
  • Зырянов Владислав Викторович
  • Кривошеева Антонина Андреевна
  • Лефлер Михаил Ноехович
  • Мануйлова Ирина Ивановна
  • Марченко Леонид Григорьевич
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Степашин Андрей Михайлович
  • Суворов Александр Вадимович
  • Шлейнинг Людмила Ивановна
  • Якушев Евгений Валерьевич
RU2352647C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2013
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Черных Елена Сергеевна
  • Горожанин Павел Юрьевич
  • Бодров Андрей Юрьевич
RU2564770C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТОЙ СТАЛИ 1998
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева А.А.
  • Марченко Л.Г.
  • Медведев А.П.
  • Мухин М.Ю.
  • Поповцев Ю.А.
  • Тетюева Т.В.
  • Усов В.А.
RU2132396C1
СПОСОБ ПРОКАТКИ ТРУБ С ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ 2005
  • Бодров Юрий Владимирович
  • Грехов Александр Игоревич
  • Горожанин Павел Юрьевич
  • Бодров Андрей Юрьевич
  • Жукова Светлана Юльевна
  • Кривошеева Антонина Андреевна
  • Лефлер Михаил Ноехович
  • Марченко Леонид Григорьевич
  • Пумпянский Дмитрий Александрович
  • Салтыков Алексей Александрович
  • Усов Владимир Антонович
  • Черных Елена Сергеевна
RU2291903C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ 2008
  • Сафьянов Анатолий Васильевич
  • Федоров Александр Анатольевич
  • Марков Дмитрий Всеволодович
  • Осадчий Владимир Яковлевич
  • Еремин Виктор Николаевич
  • Усанов Константин Александрович
  • Маковецкий Александр Николаевич
  • Лапин Леонид Игнатьевич
  • Логовиков Валерий Андреевич
  • Баричко Владимир Сергеевич
RU2387718C2
ВЫСОКОПРОЧНАЯ АУСТЕНИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ И СПОСОБ ОКОНЧАТЕЛЬНОЙ УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ НЕЕ 2004
  • Бодров Ю.В.
  • Брижан А.И.
  • Лефлер М.Н.
  • Марченко Л.Г.
  • Попов А.А.
  • Пумпянский Д.А.
  • Пышминцев И.Ю.
  • Рекин С.А.
  • Чернухин В.И.
  • Чернышев Ю.Д.
RU2254394C1
Способ производства толстолистового проката с повышенной хладостойкостью для изготовления электросварных труб и сварных конструкций 2018
  • Частухин Андрей Владимирович
  • Рингинен Дмитрий Александрович
  • Хадеев Григорий Евгеньевич
  • Эфрон Леонид Иосифович
  • Головин Сергей Викторович
  • Ильинский Вячеслав Игоревич
RU2714566C2

Иллюстрации к изобретению RU 2 163 643 C1

Реферат патента 2001 года СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ

Изобретение относится к производству труб нефтяного сортамента из микролегированных ниобием и/или ванадием сталей. Задачей изобретения является повышение прочности, пластичности и хладостойкости труб. Трубы-заготовки из стали, содержащей C, Mn, Nb, V, предварительно деформируют при 1000oC, охлаждают на воздухе в течение 55 с до 735oC, нагревают в индукционной установке до 800oC и окончательно деформируют в многоклетьевом редукционном стане с суммарной степенью деформации 20%. По выходу из последней клети стана трубы охлаждают водой в течение 1,5 с со средней скоростью 20 град/с до 680oC и окончательно охлаждают на воздухе. 1 табл.

Формула изобретения RU 2 163 643 C1

Способ изготовления труб из микролегированной ниобием и/или ванадием стали, включающий предварительную горячую деформацию, охлаждение, нагрев, окончательную деформацию и охлаждение, отличающийся тем, что после предварительной горячей деформации трубы подвергают охлаждению на воздухе в течение 55 - 60 с до 735 - 770oС, нагрев под окончательную деформацию ведут до 800 - 850oС, а после окончательной деформации осуществляют охлаждение водой в течение 1,5 - 2,0 с со средней скоростью 25 - 25oC/с с дальнейшим охлаждением на воздухе.

Документы, цитированные в отчете о поиске Патент 2001 года RU2163643C1

СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 1997
  • Бодров Юрий Владимирович[Ru]
  • Брижан Анатолий Илларионович[Ru]
  • Грехов Александр Игоревич[Ru]
  • Злобарев Владимир Алексеевич[Ru]
  • Колосов Андрей Борисович[Ru]
  • Кривошеева Антонина Андреевна[Ua]
  • Марченко Леонид Григорьевич[Ru]
  • Пономарев Николай Георгиевич[Ru]
  • Поповцев Юрий Александрович[Ru]
  • Салтыков Алексей Александрович[Ru]
  • Усов Владимир Антонович[Ru]
  • Жукова Светлана Юльевна[Ru]
RU2112052C1
SU 648624, 28.02.1979
Способ изготовления труб из аустенитных коррозионностойких сталей 1988
  • Дергач Татьяна Александровна
  • Сухомлин Георгий Дмитриевич
  • Сухаревская Ольга Степановна
  • Северина Любовь Семеновна
  • Иванилова Лидия Ивановна
SU1573037A1
Способ термической обработки трубных изделий из конструкционных легированных сталей 1984
  • Голованенко Сергей Александрович
  • Зикеев Владимир Николаевич
  • Корнющенкова Юлия Васильевна
  • Литвиненко Денис Ануфриевич
  • Тихонюк Анатолий Никифорович
  • Хотомлянский Григорий Захарович
  • Ходос Раиса Срульевна
  • Вильямс Ольга Станиславовна
  • Савенкова Татьяна Ивановна
  • Федоряка Алексей Федорович
  • Гутман Эммануил Маркович
  • Григорьева Галина Ильинична
SU1188214A1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТОЙ СТАЛИ 1998
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева А.А.
  • Марченко Л.Г.
  • Медведев А.П.
  • Мухин М.Ю.
  • Поповцев Ю.А.
  • Тетюева Т.В.
  • Усов В.А.
RU2132396C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ 1997
  • Бодров Ю.В.
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Жуков А.И.
  • Марченко Л.Г.
  • Поповцев Ю.А.
  • Шепелев А.В.
  • Тетюева Т.В.
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
RU2110588C1
Делинтерная машина 1943
  • Вдовиченко В.П.
SU64730A1
DE 3415590 A, 31.10.1985.

RU 2 163 643 C1

Авторы

Брижан А.И.(Ru)

Грехов А.И.(Ru)

Жукова С.Ю.(Ru)

Кривошеева Антонина Андреевна

Марченко Л.Г.(Ru)

Москаленко В.А.(Ru)

Поповцев Ю.А.(Ru)

Пузенко В.И.(Ru)

Степашин А.М.(Ru)

Тетюева Т.В.(Ru)

Шафигин З.К.(Ru)

Даты

2001-02-27Публикация

2000-05-10Подача