Углеродные нанотрубки и способ получения углеродных нанотрубок Российский патент 2018 года по МПК C01B32/174 B82B3/00 B82B1/00 B82Y40/00 

Описание патента на изобретение RU2669271C1

Изобретение относится к технологии углеродных наноматериалов, конкретно к технологии получения композиций, содержащих углеродные нанотрубки, диспергируемые в полимерных матрицах.

Углеродные нанотрубки (УНТ) вследствие высокой поверхностной энергии и большого отношения длины к диаметру склонны к образованию агломератов между собой и неравномерному распределению в полимерной матрице, с которой они образуют слабые Ван-дер-Ваальсовые связи. Это препятствует образованию устойчивых дисперсий УНТ в воде и в органических средах, включая полимеры, и снижает эффект наномодифицирования полимерных композиционных материалов. Для получения стабильных дисперсий УНТ в полимерной матрице применяют различные способы модифицирования нанотрубок.

Из уровня техники известны дисперсии УНТ в воде, содержащие УНТ и то или иное поверхностно-активное вещество (анионное, катионное или неионогенное) в качестве вещества, стабилизирующего дисперсию (см., например, Chen L., Xie Н., Li Y., Yu W. Applications of cationic gemini surfactant in preparing multi-walled carbon nanotube contained nanofluids // Colloids and Surfaces A: Physicochem. Eng. Aspects 330 (2008) 176-179; Rastogi R., Kaushal R., Tripathi S.K., Sharma A.L., Kaur I., Bharadwaj L.M. Comparative study of carbon nanotube dispersion using surfactants // Journal of Colloid and Interface Science 328 (2008) 421-428; Vaisman L., Wagner H.D., Marom G. The role of surfactants in dispersion of carbon nanotubes // Advances in Colloid and Interface Science 128-130 (2006) 37-46; Заявка США 20060099135, Углеродные нанотрубки высокой дисперсии твердых тел и их нематические гели, МПК D01F 9/12, 2006).

Общим для УНТ этой группы является наличие в их составе стабилизирующего вещества.

Недостатком этих дисперсий является то, что, как правило, поверхностно-активные вещества не работают в органических растворителях, что не позволяет получить стабильные дисперсии УНТ в органических растворителях. Кроме того, эти дисперсии, вследствие содержания поверхностно-активных веществ (ПАВ), не могут быть непосредственно введены в состав композиционных материалов, потому ПАВ в данном случае представляют собой балластные вещества, которые зачастую ухудшают свойства композиционного материала. Кроме того, при введении водных дисперсий УНТ, стабилизированных ПАВ, в органические системы, как правило, происходит коагуляция углеродных нанотрубок потому, что известные ПАВ не могут быть одинаково эффективными в воде и в органической среде.

Для того чтобы углеродные нанотрубки можно было вводить в различные органические и неорганические среды (воду, различные растворители, полимеры), не меняя существенно имеющиеся технологические линии, желательно создать заранее подготовленные УНТ, которые можно было бы вводить в органические системы при простом смешивании без применения ультразвука или иных методов, требующих применения сложного оборудования.

Из уровня техники известны УНТ, поверхность которых содержит привитые окисные группы (гидроксильные, карбоксильные). Получение таких УНТ с поверхностными оксидными группами осуществляется путем обработки УНТ различными окислителями в жидкой или газовой фазе: в жидкой фазе -азотной кислотой, смесью азотной и серной кислот, смесью перекиси водорода с серной кислотой, персульфатом аммония в нейтральной или аммиачной среде, перманганатом калия в кислой среде; в газовой фазе - парами азотной кислоты, диоксидом азота, озоном, кислородом) (Горский С.Ю., Разработка процесса функционализации углеродных нанотрубок в парах азотной кислоты и перекисиводорода, Диссертация на соискание ученой степени кандидата технических наук, ФГБОУ ВПО «Тамбовский государственный технический университет, Тамбов, 2014, с. 24-32). Из приведенных в источнике наиболее близким техническим решением - прототипом - являются углеродные нанотрубки, включающие функционализированную поверхность, атомы углерода кристаллической решетки которой ковалентно связаны с химически привитыми карбоксильными функциональными группами. Получение таких УНТ с функционализированной поверхностью сводится к окислению углеродных нанотрубок смесью азотной и серной кислот с образованием на поверхности углеродных нанотрубок карбоксильных функциональных групп (Горский С.Ю., Разработка процесса функционализации углеродных нанотрубок в парах азотной кислоты и перекисиводорода, Диссертация на соискание ученой степени кандидата технических наук, ФГБОУ ВПО «Тамбовский государственный технический университет, Тамбов, 2014, с. 27).

Благодаря наличию полярных окисных групп окисленные УНТ лучше смачиваются водой и полярными органическими растворителями, благодаря чему дисперсии обработанных таким образом УНТ в воде или полярных органических растворителях стабильны даже в отсутствие ПАВ. Как правило, эти дисперсии достаточно стабильны в щелочной и слабощелочной среде и нестабильны в нейтральной и кислой среде, потому что в щелочной среде поверхностные карбоксильные группы диссоциируют, вследствие чего на углеродных нанотрубках появляется отрицательный заряд, препятствующий их коагуляции.

Недостатком известных УНТ является их малая концентрация, обычно не более 0,01-0,1%, выше которой дисперсия становится неустойчивой. Это вынуждает при создании композиционных материалов вводить, а затем удалять большое количество балластного растворителя. Кроме того, наблюдается слабая адгезия таких УНТ к эпоксидным матрицам, что является причиной невысоких эксплуатационных/прочностных характеристик модифицированного такими УНТ композиционного материала.

Изобретение направлено на решение задачи получения функционализированных углеродных нанотрубок, имеющих высокое сродство к эпоксидным полимерным матрицам за счет улучшения диспергируемости УНТ и повышения их адгезии к эпоксидным матрицам.

Технический результат - повышение эксплуатационных свойств углеродных нанотрубок в качестве наномодификатора.

Поставленная задача решается, а заявленный технический результат достигается тем, что в функционализированных углеродных нанотрубках атомы углерода кристаллической решетки ковалентно связаны с химически привитыми функциональными группами, в качестве функциональных привиты имидные группы с замещающим радикал атомом водорода, при этом в способе получения функционализированных углеродных нанотрубок, включающем окисление углеродных нанотрубок смесью азотной и серной кислот с образованием на поверхности углеродных нанотрубок карбоксильных функциональных групп, углеродные нанотрубки с окисленной поверхностью дополнительно обрабатывают сначала оксидом пятивалентного фосфора, а затем аммиаком в избытке при температуре в диапазоне от 250°С до 280°С.

Изобретение основано на следующем.

Имидная группа с замещающим радикал атомом водорода проявляет следующие свойства. В аминогруппе NH атом азота ковалентно соединен с атомом водорода, который способен образовать дополнительную связь с атомом кислорода, входящим в состав эпоксигруппы в эпоксидной смоле, образующей матрицу, при этом аминогруппы способны раскрыть эпоксидную группу, образовав ковалентную связь со стенками нанотрубки.

Кислород имидной группы обусловливает химическое и электростатическое взаимодействие нанотрубок с полимерными матрицами, повышает электрические и механические свойства нанотрубок.

Очевидно, что функционализированные таким образом нанотрубки совмещают в себе свойства амидных и кислородосодержащих групп. Вышесказанное объясняет улучшение диспергируемости УНТ и повышение их адгезии к полимерным, в том числе - к эпоксидным, матрицам, что находит подтверждение в нижеприведенной таблице.

Способ получения вышеописанных функционализированных углеродных нанотрубок осуществляется следующим образом.

Углеродные нанотрубки окисляются кислотами (аналогично прототипу, дополнительных пояснений не требуется). В результате образуются углеродные нанотрубки, содержащие на своей поверхности карбоксильные группы (I).

Затем окисленные УНТ вступают в реакцию с оксидом пятивалентного фосфора (реакция протекает в нормальных условиях при обычном смешивании компонентов) с образованием O=С-O-С=O группы на поверхности углеродной нанотрубки (II).

Далее УНТ вступают в реакцию с аммиаком в избытке (определение химической реакции в избытке/недостатке общеизвестно, например, https://www.tutoronline.ru/blog/kolichestvennye-raschety-v-himii-izbytok-i-nedostatok-reagentov-prakticheskij-vyhod-produkta-massovaja-dolja-vewestva-v-smesi) при соблюдении температурного интервала от 250°С до 280°С. В результате на поверхности УНТ образуются имидные группы (III).

При температурном режиме ниже 250°С и/или недостаточности аммиака реакция III завершается получением на поверхности УНТ карбоксильных и амидных групп (IV).

Такая структура не проявляет заявленного технического результата, крайне не стабильна и, вследствие сказанного, нежелательна.

При превышении 280°С в III происходит деструкция УНТ.

Пример осуществления способа получения углеродных нанотрубок.

Углеродные нанотрубки (многостенные) помещаются в раствор кислоты и выдерживаются в течение 10 часов. Такое время выбрано вследствие того, что это наиболее оптимальная продолжительность окисления, при котором не будет происходить значительной деструкции стенок нанотрубки.

После этого углеродные нанотрубки отфильтровываются, высушиваются до постоянной массы и выдерживаются при температуре 100°С (температура повышена до 100°С в целях ускорении реакции) в течение 1 часа в присутствии оксида пятивалентного фосфора. Затем нанотрубки отфильтровываются до нейтральной среды, высушивается до постоянной массы, и реагируют с аммиаком в газовой фазе (обусловлена применяемым температурным режимом) при температуре 250-280°С в течение двух часов.

Полученные УНТ с заданной структурой сравнивались с прототипом путем диспергирования тех и других УНТ в эпоксидной матрице для получения эпоксинанокомпозитов с последующим измерением физико-механических свойств полученных образцов. Данные приведены в Таблице.

Из представленной таблицы следует, что физико-механические свойства образца с заявленными УНТ, равно как и допустимый процент содержания УНТ в матрице без коагуляции выше чем в прототипе, что свидетельствует о том, что поставленная задача изобретения - получение функционализированных углеродных нанотрубок, имеющих высокое сродство к эпоксидным полимерным матрицам за счет создания ковалентных и водородных связей и обладающих высокой диспергируемостью УНТ в эпоксидных матрицах - решена, а заявленный технический результат - повышение эксплуатационных свойств углеродных нанотрубок в качестве наномодификатора - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимых пунктах формулы изобретения признаки являются существенными и взаимосвязаны между собой с образованием устойчивых совокупностей неизвестных на дату приоритета из уровня техники необходимых признаков, достаточных для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объекты, воплощающие заявленное техническое решение, при их осуществлении относятся к технологии углеродных наноматериалов, конкретно к технологии получения композиций, содержащих углеродные нанотрубки, диспергируемые в полимерных матрицах;

- для заявленных объекта в том виде, как он охарактеризован в независимых пунктах формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки и известных из уровня техники на дату приоритета средств и методов;

- объекты, воплощающие заявленное техническое решение, при их осуществлении способны обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленные объекты соответствуют требованиям условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Похожие патенты RU2669271C1

название год авторы номер документа
Способ ковалентной функционализации углеродных нанотрубок с одновременным ультразвуковым диспергированием для введения в эпоксидные композиции 2017
  • Крестинин Анатолий Васильевич
  • Шестаков Владимир Леонидович
RU2660852C1
ДИСПЕРСИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Леус Зинаида Григорьевна
  • Редкозубова Елена Петровна
RU2531171C2
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСИЙ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Однолько Валерий Григорьевич
RU2531172C2
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Дьячкова Татьяна Петровна
  • Аладинский Алексей Александрович
RU2528985C2
Способ получения модифицированных углеродных нанотрубок 2017
  • Крестинин Анатолий Васильевич
  • Марченко Александр Петрович
  • Радугин Александр Владимирович
RU2708596C1
УГЛЕРОДНЫЕ НАНОТРУБКИ, ФУНКЦИОНАЛИЗИРОВАННЫЕ ФУЛЛЕРЕНАМИ 2006
  • Кауппинен Эско
  • Браун Дэвид П.
  • Насибулин Альберт Г.
  • Джианг Хуа
RU2437832C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО КОМПОЗИТА С НАНОМОДИФИЦИРОВАННЫМ НАПОЛНИТЕЛЕМ (ВАРИАНТЫ). 2013
  • Хантимеров Сергей Мансурович
  • Сулейманов Наиль Муратович
RU2602798C2
Радиопоглощающий композитный материал на основе многослойных углеродных нанотрубок, модифицированных ферритовыми наночастицами 2019
  • Быков Александр Андреевич
RU2747932C2
Способ получения модифицированных углеродных нанотрубок 2016
  • Крестинин Анатолий Васильевич
  • Марченко Александр Петрович
  • Радугин Александр Владимирович
RU2637687C1
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2013
  • Дьячкова Татьяна Петровна
  • Мележик Александр Васильевич
  • Горский Сергей Юрьевич
  • Ткачев Алексей Григорьевич
RU2569096C2

Реферат патента 2018 года Углеродные нанотрубки и способ получения углеродных нанотрубок

Изобретение относится к нанотехнологии и может быть использовано при изготовлении полимерных композитов. Углеродные нанотрубки окисляют смесью азотной и серной кислот с образованием карбоксильных функциональных групп, ковалентно связанных с их поверхностью. Затем углеродные нанотрубки с окисленной поверхностью дополнительно обрабатывают сначала оксидом пятивалентного фосфора, а затем аммиаком в избытке при 250-280°С. Получают углеродные нанотрубки, модифицированные имидными функциональными группами с замещающим радикал атомом водорода, привитыми к их поверхности, которые могут быть использованы в качестве наномодификатора эпоксидных полимерных матриц, повышающих такие механические свойства, как прочность на растяжение, модуль упругости, относительное удлинение. 2 н.п. ф-лы, 1 табл.

Формула изобретения RU 2 669 271 C1

1. Углеродные нанотрубки, включающие функционализированную поверхность, атомы углерода кристаллической решетки которой ковалентно связаны с химически привитыми функциональными группами, отличающиеся тем, что в качестве функциональных привиты имидные группы с замещающим радикал атомом водорода.

2. Способ получения углеродных нанотрубок, включающий окисление углеродных нанотрубок смесью азотной и серной кислот с образованием на поверхности углеродных нанотрубок карбоксильных функциональных групп, отличающийся тем, что углеродные нанотрубки с окисленной поверхностью дополнительно обрабатывают сначала оксидом пятивалентного фосфора, а затем аммиаком в избытке при температуре в диапазоне от 250°C до 280°C.

Документы, цитированные в отчете о поиске Патент 2018 года RU2669271C1

ГОРСКИЙ С.Ю
Разработка процесса функционализации углеродных нанотрубок в парах азотной кислоты и перекиси водорода
Диссертация на соискание учёной степени кандидата технических наук, Тамбов, 2014, с.с
Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР, МОДИФИЦИРОВАННЫХ МЕТАЛЛОМ, ЛИГАТУРА ДЛЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ ИЛИ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2014
RU2593875C2
US 5853877 A, 29.12.1998
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
CN 103257176 A, 21.08.2013.

RU 2 669 271 C1

Авторы

Красновский Александр Николаевич

Кищук Петр Сергеевич

Даты

2018-10-09Публикация

2017-05-25Подача