ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ВЫСОКОПРОЧНОГО СПЛАВА НА ОСНОВЕ ТИТАНА Российский патент 2015 года по МПК C22C14/00 

Описание патента на изобретение RU2569285C1

Изобретение относится к области цветной металлургии, а именно к созданию универсальных конструкционных высокопрочных высокотехнологичных титановых сплавов, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов (в том числе тонколистовых), которые могут быть использованы в силовых конструкциях авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C.

Известен сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2086694, опубл. 10.08.1997 г.):

алюминий 0,4-6,0 марганец 0,5-2,0 железо 0,03-0,3 цирконий 0,03-0,3 медь 0,03-0,3 никель 0,03-0,3 кремний 0,03-0,3 кислород 0,03-0,3 углерод 0,02-0,2 азот 0,004-0,04 водород 0,002-0,008 титан остальное

Из известного сплава изготавливают детали и узлы авиакосмической техники, в частности сварные и сложнопрофильные листовые конструкции. Данный сплав обладает высоким уровнем технологической пластичности, позволяющей изготавливать из него листовые полуфабрикаты путем холодной прокатки, а также проводить холодную или теплую штамповку деталей из них.

Недостатками известного сплава являются: неспособность к эффективному упрочнению путем термической обработки, низкий уровень прочностных свойств и высокая склонность к испарению марганца при выплавке слитков.

Известен сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2269584, опубл. 10.02.2006 г.):

алюминий 3,5-4,4 ванадий 2,0-4,0 молибден 0,1-0,8 железо макс. 0,4 кислород макс. 0,25 титан остальное

Из известного сплава изготавливают крупногабаритные поковки и штамповки, тонколистовой прокат и фольгу.

Недостатком сплава является низкий уровень прочностных свойств и неспособность к самозакаливанию.

Наиболее близким аналогом, взятым за прототип, является сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2418087, опубл. 10.05.2011 г.):

алюминий 2,0-5,0 молибден и/или ванадий 4,0-10,0 хром 5,5-11,0 железо 2,0-4,0 цирконий 1,0-4,0 титан остальное

Сплав предпочтительно относится к высоколегированным (α+β) и псевдо-β титановым сплавам с комплексным легированием изоморфными и эвтектоидными β-стабилизаторами. Из него изготавливают прутки, профили для различных применений, в частности для крепежа, пружин и других изделий, имеющих низкий модуль упругости и высокую прочность.

Недостатком сплава является склонность к ликвации из-за высокого содержания железа и хрома, что может привести к снижению уровня механических свойств материала; высокий уровень прочности в состоянии после закалки/отжига, приводящий к более интенсивному износу штампового инструмента и технологической оснастки при изготовлении деформированных полуфабрикатов.

Технической задачей предлагаемого изобретения является создание универсального высокопрочного титанового сплава, легированного редкоземельными металлами (РЗМ), обладающего повышенными механическими и технологическими характеристиками и предназначенного для изготовления полуфабрикатов широкого сортамента (листы, плиты, прутки, поковки, штамповки) и сложнопрофильных конструкций, в частности, из листовых полуфабрикатов путем штамповки вхолодную.

Технический результат: повышение прочностных характеристик при сохранении на высоком уровне технологической пластичности сплава в термически упрочненном состоянии, повышение технологичности в закаленном состоянии.

Поставленный технический результат достигается с помощью сплава на основе титана, содержащего алюминий, молибден, ванадий, хром, железо, цирконий, отличающегося тем, что дополнительно содержит олово, иттрий и/или гадолиний, при следующем соотношении компонентов, масс. %:

алюминий 1,5-3,5 молибден 1,0-3,0 ванадий 8,0-12,0 хром 2,5-5,0 железо 0,3-1,8 цирконий 0,4-2,0 олово 0,4-2,0 иттрий и/или гадолиний 0,01-0,16 титан и примеси остальное

Предпочтительно, суммарное содержание молибдена и ванадия составляет 9-15 масс. %.

Предпочтительно, суммарное содержание хрома и железа составляет 2,8-6,8 масс. %.

Авторами было установлено, что для реализации высокой прочности конечных изделий и высокой технологической пластичности полуфабрикатов на стадии их изготовления необходимо одновременное соблюдение ряда условий по легированию сплава.

Известно, что снижение общей степени легирования псевдо-β титановых сплавов сопровождается снижением эффекта самозакаливания, приводит к снижению технологичности сплава (из-за образования α-фазы при проведении межоперационных отжигов в промышленных вакуумных печах большого объема) и, как следствие, усложнению технологии и повышению стоимости изготовления листовых полуфабрикатов. Чрезмерное легирование сплава β-стабилизаторами (в частности, Mo, V, Cr, Fe) приводит к повышению его плотности, повышению стабильности β-твердого раствора и, как результат, снижению эффективности и увеличению времени проведения упрочняющей термической обработки, снижению модуля упругости и ряду других эффектов. На основании этих данных суммарное содержание β-стабилизирующих элементов, выраженное молибденовым эквивалентом Моэкв (Молибденовый эквивалент рассчитан по следующей формуле: [Mo]eq=%Мо+%Nb/3,3+%Та/4+%W/2+%V/1,4+%Cr/0,6+%Mn/0,6+%Fe/0,5+%Co/0,9+%Ni/0,8), определено авторами в интервале от 15,5 до 20 единиц.

Исследования авторов и анализ научно-технических источников показали, что содержание алюминия в титановых сплавах четко коррелирует с прочностными и пластическими свойствами. Анализ выявленных корреляций позволил ограничить минимальное содержание алюминия с целью подавления образования крайне нежелательной атермической ω-фазы, резко снижающей пластичность сплава. Максимальное его содержание обусловлено необходимостью сохранения высокой технологичности полуфабрикатов и высокой прочности конечных изделий.

Введение нейтральных упрочнителей (олова и циркония) в указанном количестве применено в качестве дополнительной меры, предотвращающей образование охрупчивающей атермической ω-фазы, и позволяет повысить прочностные характеристики при сохранении на высоком уровне технологической пластичности сплава. Комплексное легирование данными элементами эффективно упрочняет α-фазу и позволяет добиться большего эффекта от проведения упрочняющей термической обработки и, следовательно, повысить уровень прочностных свойств конечного изделия.

Установленное авторами содержание и соотношение молибдена и ванадия способствует получению высокой технологичности сплава, и при этом реализуется возможность получения умеренно высоких прочностных свойств после упрочняющей термической обработки.

Уменьшенное по сравнению с прототипом содержание хрома и железа обусловлено рядом факторов. Несмотря на то что эти элементы хорошо упрочняют сплавы и являются сильными β-стабилизаторами, в сплавах с их высоким содержанием существует реальная возможность образования охрупчивающих сплав интерметаллидов в результате эвтектоидного превращения, происходящего при длительных изотермических выдержках при повышенных температурах в процессе эксплуатации, а при выплавке слитков велика вероятность образования химических неоднородностей.

Авторами установлено, что введение редкоземельных металлов (РЗМ) (иттрия и гадолиния) в указанном количестве позволяет реализовать эффект модифицирования и рафинирования микрообъемов сплава, что повышает прочностные характеристики при сохранении на высоком уровне технологической пластичности сплава и снижает модуль упругости в закаленном состоянии, а это благоприятно сказывается на технологичности изготовления и конечной стоимости сложнопрофильных изделий, изготовленных из него. За счет более равномерного и дисперсного распада β-фазы при старении, обусловленного специфическим воздействием вышеуказанных элементов и снижением критического размера зародыша частиц α-фазы, достигается высокий уровень прочностных свойств в состоянии после упрочняющей термической обработки.

Примеры осуществления

Пример 1. Предлагаемый сплав (в соответствии с таблицей №1) в виде слитков выплавляли методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в обычных или квази-изотермических условиях на сутунки (40-45)×180-220×L мм. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям «как чисто». Прокатка полученных сутунок проводилась в 4 этапа: горячая прокатка на лист толщиной 7 мм, теплая прокатка на 4 мм, холодная прокатка в 2 этапа до толщины готового листа 2 мм. Промежуточные листовые полуфабрикаты между операциями прокатки подвергались закалке на β-фазу, пескоструйной обработке и травлению. Готовые листы подвергались термической обработке по целевым режимам: закалке на β-фазу или упрочняющей термической обработке. Прочностные свойства определялись путем проведения испытаний на растяжение при комнатной температуре, технологические - путем определения минимального радиуса гибки листовых полуфабрикатов при комнатной температуре и технологической осадке цилиндрических образцов при температурах горячей деформации.

Примеры 2-5 аналогичны примеру 1.

В таблице 1 приведено содержание легирующих элементов выплавленных слитков, механические и технологические свойства предлагаемого сплава и сплава-прототипа.

Технический результат - в предлагаемом сплаве предел прочности в закаленном состоянии понизился на 11-20%, предел прочности в состоянии после упрочняющей термической обработки повысился на 7-11,5% при сохранении хорошего уровня пластичности, технологическая пластичность сплава соответствует технологической пластичности листовых малолегированных высокотехнологичных титановых сплавов группы ОТ4.

Использование предлагаемого сплава на основе титана позволит изготавливать различные конструктивные элементы, в частности высокопрочные сложнопрофильные листовые, что позволить снизить их вес за счет более высокого уровня удельной прочности и повысить надежность по сравнению с традиционно применяемыми листовыми титановыми сплавами.

Похожие патенты RU2569285C1

название год авторы номер документа
СПЛАВ НА ОСНОВЕ ТИТАНА (ВАРИАНТЫ) И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2606677C1
Сплав на основе титана и изделие, выполненное из него 2016
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Ширяев Андрей Александрович
  • Грибков Юрий Александрович
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2614356C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2018
  • Ковальчук Михаил Валентинович
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Кулик Вера Петровна
  • Третьякова Наталья Валерьевна
  • Ледер Михаил Оттович
RU2690257C1
Сплав на основе титана и изделие, выполненное из него 2015
  • Каблов Евгений Николаевич
  • Грибков Юрий Александрович
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Алексеев Евгений Борисович
RU2610657C1
Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами 2016
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Ширяев Андрей Александрович
  • Грибков Юрий Александрович
  • Моисеев Николай Валентинович
RU2635650C1
Интерметаллидный сплав на основе титана и изделие из него 2016
  • Антипов Владислав Валерьевич
  • Ночовная Надежда Алексеевна
  • Денисов Анатолий Яковлевич
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2627304C1
СПЛАВ НА ОСНОВЕ ТИТАНА И ПРУТКОВАЯ ЗАГОТОВКА ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА 2017
  • Бекмансуров Рустам Фанильевич
  • Ившин Антон Владимирович
  • Негодин Дмитрий Алексеевич
  • Поздеев Сергей Анатольевич
  • Скворцова Светлана Владимировна
  • Токарев Константин Александрович
  • Хлобыстов Дмитрий Олегович
  • Ярославцев Алексей Анатольевич
RU2690768C1
ЭКОНОМНОЛЕГИРОВАННЫЙ ТИТАНОВЫЙ СПЛАВ 2015
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Антипов Владислав Валерьевич
  • Панин Павел Васильевич
  • Боков Константин Александрович
RU2610193C1
СПЛАВ НА ОСНОВЕ ТИТАНА 1999
  • Моисеев В.Н.
  • Грибков Ю.А.
  • Воробьев И.А.
  • Володин В.А.
  • Полькин И.С.
RU2156825C1
СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА 2014
  • Каблов Евгений Николаевич
  • Павлова Тамара Васильевна
  • Кашапов Олег Салаватович
  • Ночовная Надежда Алексеевна
  • Истракова Анастасия Романовна
  • Калашников Владимир Сергеевич
RU2566125C1

Реферат патента 2015 года ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ВЫСОКОПРОЧНОГО СПЛАВА НА ОСНОВЕ ТИТАНА

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, используемым для изготовления деформированных полуфабрикатов. Сплав на основе титана содержит, мас. %: алюминий 1,5-3,5; молибден 1,0-3,0; ванадий 8,0-12,0; хром 2,5-5,0; железо 0,3-1,8; цирконий 0,4-2,0; олово 0,4-2,0; иттрий и/или гадолиний 0,01-0,16; титан и примеси остальное. Сплав характеризуется высокими прочностными характеристиками при сохранении высокой пластичности сплава в термически упрочненном состоянии, а также повышенной технологичностью в закаленном состоянии. 2 н. и 2 з.п. ф-лы, 1 табл., 5 пр.

Формула изобретения RU 2 569 285 C1

1. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, отличающийся тем, что он дополнительно содержит олово, иттрий и/или гадолиний, при следующем соотношении компонентов, мас. %:
алюминий 1,5-3,5 молибден 1,0-3,0 ванадий 8,0-12,0 хром 2,5-5,0 железо 0,3-1,8 цирконий 0,4-2,0 олово 0,4-2,0 иттрий и/или гадолиний 0,01-0,16 титан и примеси остальное

2. Сплав на основе титана по п. 1, отличающийся тем, что суммарное содержание молибдена и ванадия составляет 9-15 мас. %.

3. Сплав на основе титана по п. 1, отличающийся тем, что суммарное содержание хрома и железа составляет 2,8-6,8 мас. %.

4. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по п. 1.

Документы, цитированные в отчете о поиске Патент 2015 года RU2569285C1

Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 569 285 C1

Авторы

Каблов Евгений Николаевич

Ночовная Надежда Алексеевна

Ширяев Андрей Александрович

Грибков Юрий Александрович

Даты

2015-11-20Публикация

2014-12-29Подача