Изобретение относится к области цветной металлургии, а именно к созданию универсальных конструкционных высокопрочных высокотехнологичных титановых сплавов, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов (в том числе тонколистовых), которые могут быть использованы в силовых конструкциях авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C.
Известен сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2086694, опубл. 10.08.1997 г.):
Из известного сплава изготавливают детали и узлы авиакосмической техники, в частности сварные и сложнопрофильные листовые конструкции. Данный сплав обладает высоким уровнем технологической пластичности, позволяющей изготавливать из него листовые полуфабрикаты путем холодной прокатки, а также проводить холодную или теплую штамповку деталей из них.
Недостатками известного сплава являются: неспособность к эффективному упрочнению путем термической обработки, низкий уровень прочностных свойств и высокая склонность к испарению марганца при выплавке слитков.
Известен сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2269584, опубл. 10.02.2006 г.):
Из известного сплава изготавливают крупногабаритные поковки и штамповки, тонколистовой прокат и фольгу.
Недостатком сплава является низкий уровень прочностных свойств и неспособность к самозакаливанию.
Наиболее близким аналогом, взятым за прототип, является сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2418087, опубл. 10.05.2011 г.):
Сплав предпочтительно относится к высоколегированным (α+β) и псевдо-β титановым сплавам с комплексным легированием изоморфными и эвтектоидными β-стабилизаторами. Из него изготавливают прутки, профили для различных применений, в частности для крепежа, пружин и других изделий, имеющих низкий модуль упругости и высокую прочность.
Недостатком сплава является склонность к ликвации из-за высокого содержания железа и хрома, что может привести к снижению уровня механических свойств материала; высокий уровень прочности в состоянии после закалки/отжига, приводящий к более интенсивному износу штампового инструмента и технологической оснастки при изготовлении деформированных полуфабрикатов.
Технической задачей предлагаемого изобретения является создание универсального высокопрочного титанового сплава, легированного редкоземельными металлами (РЗМ), обладающего повышенными механическими и технологическими характеристиками и предназначенного для изготовления полуфабрикатов широкого сортамента (листы, плиты, прутки, поковки, штамповки) и сложнопрофильных конструкций, в частности, из листовых полуфабрикатов путем штамповки вхолодную.
Технический результат: повышение прочностных характеристик при сохранении на высоком уровне технологической пластичности сплава в термически упрочненном состоянии, повышение технологичности в закаленном состоянии.
Поставленный технический результат достигается с помощью сплава на основе титана, содержащего алюминий, молибден, ванадий, хром, железо, цирконий, отличающегося тем, что дополнительно содержит олово, иттрий и/или гадолиний, при следующем соотношении компонентов, масс. %:
Предпочтительно, суммарное содержание молибдена и ванадия составляет 9-15 масс. %.
Предпочтительно, суммарное содержание хрома и железа составляет 2,8-6,8 масс. %.
Авторами было установлено, что для реализации высокой прочности конечных изделий и высокой технологической пластичности полуфабрикатов на стадии их изготовления необходимо одновременное соблюдение ряда условий по легированию сплава.
Известно, что снижение общей степени легирования псевдо-β титановых сплавов сопровождается снижением эффекта самозакаливания, приводит к снижению технологичности сплава (из-за образования α-фазы при проведении межоперационных отжигов в промышленных вакуумных печах большого объема) и, как следствие, усложнению технологии и повышению стоимости изготовления листовых полуфабрикатов. Чрезмерное легирование сплава β-стабилизаторами (в частности, Mo, V, Cr, Fe) приводит к повышению его плотности, повышению стабильности β-твердого раствора и, как результат, снижению эффективности и увеличению времени проведения упрочняющей термической обработки, снижению модуля упругости и ряду других эффектов. На основании этих данных суммарное содержание β-стабилизирующих элементов, выраженное молибденовым эквивалентом Моэкв (Молибденовый эквивалент рассчитан по следующей формуле: [Mo]eq=%Мо+%Nb/3,3+%Та/4+%W/2+%V/1,4+%Cr/0,6+%Mn/0,6+%Fe/0,5+%Co/0,9+%Ni/0,8), определено авторами в интервале от 15,5 до 20 единиц.
Исследования авторов и анализ научно-технических источников показали, что содержание алюминия в титановых сплавах четко коррелирует с прочностными и пластическими свойствами. Анализ выявленных корреляций позволил ограничить минимальное содержание алюминия с целью подавления образования крайне нежелательной атермической ω-фазы, резко снижающей пластичность сплава. Максимальное его содержание обусловлено необходимостью сохранения высокой технологичности полуфабрикатов и высокой прочности конечных изделий.
Введение нейтральных упрочнителей (олова и циркония) в указанном количестве применено в качестве дополнительной меры, предотвращающей образование охрупчивающей атермической ω-фазы, и позволяет повысить прочностные характеристики при сохранении на высоком уровне технологической пластичности сплава. Комплексное легирование данными элементами эффективно упрочняет α-фазу и позволяет добиться большего эффекта от проведения упрочняющей термической обработки и, следовательно, повысить уровень прочностных свойств конечного изделия.
Установленное авторами содержание и соотношение молибдена и ванадия способствует получению высокой технологичности сплава, и при этом реализуется возможность получения умеренно высоких прочностных свойств после упрочняющей термической обработки.
Уменьшенное по сравнению с прототипом содержание хрома и железа обусловлено рядом факторов. Несмотря на то что эти элементы хорошо упрочняют сплавы и являются сильными β-стабилизаторами, в сплавах с их высоким содержанием существует реальная возможность образования охрупчивающих сплав интерметаллидов в результате эвтектоидного превращения, происходящего при длительных изотермических выдержках при повышенных температурах в процессе эксплуатации, а при выплавке слитков велика вероятность образования химических неоднородностей.
Авторами установлено, что введение редкоземельных металлов (РЗМ) (иттрия и гадолиния) в указанном количестве позволяет реализовать эффект модифицирования и рафинирования микрообъемов сплава, что повышает прочностные характеристики при сохранении на высоком уровне технологической пластичности сплава и снижает модуль упругости в закаленном состоянии, а это благоприятно сказывается на технологичности изготовления и конечной стоимости сложнопрофильных изделий, изготовленных из него. За счет более равномерного и дисперсного распада β-фазы при старении, обусловленного специфическим воздействием вышеуказанных элементов и снижением критического размера зародыша частиц α-фазы, достигается высокий уровень прочностных свойств в состоянии после упрочняющей термической обработки.
Примеры осуществления
Пример 1. Предлагаемый сплав (в соответствии с таблицей №1) в виде слитков выплавляли методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в обычных или квази-изотермических условиях на сутунки (40-45)×180-220×L мм. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям «как чисто». Прокатка полученных сутунок проводилась в 4 этапа: горячая прокатка на лист толщиной 7 мм, теплая прокатка на 4 мм, холодная прокатка в 2 этапа до толщины готового листа 2 мм. Промежуточные листовые полуфабрикаты между операциями прокатки подвергались закалке на β-фазу, пескоструйной обработке и травлению. Готовые листы подвергались термической обработке по целевым режимам: закалке на β-фазу или упрочняющей термической обработке. Прочностные свойства определялись путем проведения испытаний на растяжение при комнатной температуре, технологические - путем определения минимального радиуса гибки листовых полуфабрикатов при комнатной температуре и технологической осадке цилиндрических образцов при температурах горячей деформации.
Примеры 2-5 аналогичны примеру 1.
В таблице 1 приведено содержание легирующих элементов выплавленных слитков, механические и технологические свойства предлагаемого сплава и сплава-прототипа.
Технический результат - в предлагаемом сплаве предел прочности в закаленном состоянии понизился на 11-20%, предел прочности в состоянии после упрочняющей термической обработки повысился на 7-11,5% при сохранении хорошего уровня пластичности, технологическая пластичность сплава соответствует технологической пластичности листовых малолегированных высокотехнологичных титановых сплавов группы ОТ4.
Использование предлагаемого сплава на основе титана позволит изготавливать различные конструктивные элементы, в частности высокопрочные сложнопрофильные листовые, что позволить снизить их вес за счет более высокого уровня удельной прочности и повысить надежность по сравнению с традиционно применяемыми листовыми титановыми сплавами.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ НА ОСНОВЕ ТИТАНА (ВАРИАНТЫ) И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2015 |
|
RU2606677C1 |
Сплав на основе титана и изделие, выполненное из него | 2016 |
|
RU2614356C1 |
СПЛАВ НА ОСНОВЕ ТИТАНА | 2018 |
|
RU2690257C1 |
Сплав на основе титана и изделие, выполненное из него | 2015 |
|
RU2610657C1 |
Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами | 2016 |
|
RU2635650C1 |
Интерметаллидный сплав на основе титана и изделие из него | 2016 |
|
RU2627304C1 |
СПЛАВ НА ОСНОВЕ ТИТАНА И ПРУТКОВАЯ ЗАГОТОВКА ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА | 2017 |
|
RU2690768C1 |
ЭКОНОМНОЛЕГИРОВАННЫЙ ТИТАНОВЫЙ СПЛАВ | 2015 |
|
RU2610193C1 |
СПЛАВ НА ОСНОВЕ ТИТАНА | 1999 |
|
RU2156825C1 |
СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА | 2014 |
|
RU2566125C1 |
Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, используемым для изготовления деформированных полуфабрикатов. Сплав на основе титана содержит, мас. %: алюминий 1,5-3,5; молибден 1,0-3,0; ванадий 8,0-12,0; хром 2,5-5,0; железо 0,3-1,8; цирконий 0,4-2,0; олово 0,4-2,0; иттрий и/или гадолиний 0,01-0,16; титан и примеси остальное. Сплав характеризуется высокими прочностными характеристиками при сохранении высокой пластичности сплава в термически упрочненном состоянии, а также повышенной технологичностью в закаленном состоянии. 2 н. и 2 з.п. ф-лы, 1 табл., 5 пр.
1. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, отличающийся тем, что он дополнительно содержит олово, иттрий и/или гадолиний, при следующем соотношении компонентов, мас. %:
2. Сплав на основе титана по п. 1, отличающийся тем, что суммарное содержание молибдена и ванадия составляет 9-15 мас. %.
3. Сплав на основе титана по п. 1, отличающийся тем, что суммарное содержание хрома и железа составляет 2,8-6,8 мас. %.
4. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по п. 1.
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Авторы
Даты
2015-11-20—Публикация
2014-12-29—Подача