Сплав на основе титана и изделие, выполненное из него Российский патент 2017 года по МПК C22C14/00 

Описание патента на изобретение RU2614356C1

Изобретение относится области цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве высокопрочного конструкционного термически упрочняемого материала. Из сплава могут быть изготовлены деформированные полуфабрикаты широкой номенклатуры (листы, лента, фольга, плиты, прутки, штамповки и др.), которые могут быть использованы в силовых конструкциях авиационной и космической техники, энергетических установок и ракет, длительно работающих при температурах до 350°C.

Из уровня техники известно, что легирование редкими металлами (РМ) и редкоземельными металлами (РЗМ) зачастую используется для повышения прочностных свойств сплавов посредством преимущественно дисперсионного упрочнения (доля твердорастворного упрочнения в ряде примеров относительно невелика).

Так, известен метод формирования направленной текстуры в титановом сплаве, легированном редкими металлами и РЗМ, в количестве до 3 мас.%. Введение РЗМ например эрбия или иттрия в указанном количестве позволяет получить в структуре сплава не менее 0,5 об.% стабильных и стойких при температурах выше Тпп дисперсных частиц, что и вызывает повышение его прочностных и жаропрочных свойств (US 5074907, C22C 14/00, опубл. 24.12.1991).

К недостаткам данного способа относится то, что для изготовления полуфабрикатов требуется применение методов порошковой металлургии, а направленная текстура характеризуется выраженной анизотропией свойств. Использование металлических порошков, полученных методом газовой атомизации, и операция их последующего спекания существенно повышают стоимость изделий. Известно, что деформированные полуфабрикаты, обладающие выраженной текстурой и анизотропией свойств, обладают значительно более низкими значениями пластических свойств в поперечном направлении, что снижает гарантированный уровень эксплуатационных свойств изделия.

Известен сплав (GB 1479855, С22С 14/00, опубл. 13.07.1977) на основе титана, имеющий следующий химический состав, мас.%:

алюминий 1,0-6,0 ванадий 0,1-10,0 молибден 5,0-10,0 хром 4,0-12,0 железо 0,1-4,0 никель 0,3-4,0 кислород <0,2 азот <0,1 водород <0,03 углерод <0,05 титан остальное

Недостаток сплава заключается в его низкой технологической пластичности, затрудняющей его обработку и изготовление полуфабрикатов.

Известен сплав (JP 2004068146, C22C 14/00, опубл. 04.03.2004) на основе титана, имеющий следующий химический состав, мас.%:

алюминий 2,5-5,0 ванадий 15-25 олово 0,5-4,0 кислород <0,2 титан и примеси остальное

Недостаток известного сплава заключается в длительности упрочняющей термической обработки, недостаточном уровне эксплуатационных свойств, обусловленным преимущественным легированием изоморфными β-стабилизаторами.

Наиболее близким аналогом заявленного технического решения является сплав на основе титана (SU 1621543, C22C 14/00, опубл. 15.08.1994), имеющий следующий химический состав, мас.%:

алюминий 2,0-4,0 ванадий 14,0-20,0 хром 2,0-5,0 олово 2,0-4,0 молибден 0,5-3,0 цирконий 0,3-2,0 ниобий 0,01-0,40 титан остальное

Недостатком известного сплава является недостаточный уровень пластичности в термически упрочненном состоянии и циклической прочности.

Технической задачей предлагаемого изобретения является создание титанового сплава, предназначенного для изготовления полуфабрикатов широкого сортамента (листы, плиты, прутки, поковки, штамповки), обладающего повышенным уровнем эксплуатационных свойств.

Технический результат заявленного изобретения заключается в повышении значений пластичности, термической стабильности и предела ползучести в термически упрочненном состоянии при сохранении значений вязкости разрушения.

Поставленный технический результат достигается с помощью сплава на основе титана, содержащего алюминий, молибден, ванадий, хром, цирконий, олово, ниобий и иттрий, при следующем соотношении компонентов, мас.%:

алюминий 1,5-4,5 ванадий 13,5-19,0 хром 2,0-5,0 олово 2,0-4,0 молибден 0,5-2,5 цирконий 0,5-2,5 ниобий 0,01-0,40 иттрий 0,005-0,150 титан и примеси остальное

Сплав дополнительно может содержать кислород в количестве от 0,04 до 0,16 мас.%.

Суммарное содержание олова и циркония должно находиться в пределах от 2,6 до 6,1 мас.%.

Взаимное соотношение алюминия и кислорода может составлять от 40/1 до 20/1 в мас. долях.

Изобретение также относится к изделию из заявленного сплава на основе титана.

Авторами было установлено, что регламентированное содержание кислорода и алюминия обеспечивает повышение предела ползучести. Цирконий образует непрерывный ряд твердых растворов с обеими модификациями титана (α и β), и с увеличением содержания циркония в сплаве возрастает предел прочности, также его добавка существенно повышает длительную прочность и сопротивление ползучести сплава. Кроме того, цирконий в небольших количествах оказывает модифицирующее влияние на структуру сплава, изменяя характер внутризеренной структуры и уменьшая размер зерна. Легирование титана оловом и цирконием при соблюдении установленного взаимного соотношения указанных элементов значительно повышает комплекс механических свойств при комнатной и повышенных температурах (например, жаропрочность и предел ползучести). Также легирование сплава оловом в указанной концентрации позволяет повысить пластичность и ускорить процессы распада β-твердого раствора при старении, что приводит к сокращению трудоемкости и энергозатрат при проведении его термической обработки. Введение в сплав ниобия обеспечивает повышение уровня пластичности и вязкости разрушения. Введение редкоземельного металла иттрия в указанном количестве позволяет реализовать эффект модифицирования и рафинирования микрообъемов сплава, обеспечить более равномерный и однородный распад β-фазы при старении, обусловленный снижением критического размера зародыша частиц α-фазы. Иттрий дополнительно улучшает структурную стабильность границ зерен, повышая тем самым термическую стабильность и предел ползучести сплава.

Легирование титановых сплавов молибденом и ванадием обеспечивает возможность достижения высокого уровня прочностных характеристик и эффективности упрочняющей термической обработки. Совместное легирование сплава данными элементами в указанном количестве способствует за счет умеренного твердорастворного упрочнения получению высокой пластичности при умеренно высоких значениях прочностных свойств.

Выбранное содержание хрома обусловлено тем, что этот элемент хорошо упрочняет титановые сплавы и является сильным β-стабилизатором. Но при легировании сплава хромом больше установленных в данном изобретении максимальных пределов могут при длительных изотермических выдержках образовываться охрупчивающие интерметаллиды (TiCr2), а при выплавке слитков велика вероятность образования химических неоднородностей.

Оптимальное сочетание α- и β-стабилизаторов (алюминия, молибдена, ванадия, хрома и ниобия) позволяет проводить упрочняющую ступенчатую термическую обработку в вакуумных и аргоновакуумных печах, повысить характеристики пластичности и термической стабильности в термически упрочненном состоянии.

Примеры осуществления

Пример 1. Предлагаемый сплав (в соответствии с таблицей №1) в виде слитков выплавляли методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в обычных или квази-изотермических условиях на сутунки (40-45)×180-220×L мм. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям «как чисто». Прокатка полученных сутунок проводилась последовательно в несколько этапов: горячая прокатка на промежуточный листовой полуфабрикат, далее теплая и холодная прокатки. Промежуточные листовые полуфабрикаты между операциями прокатки подвергались закалке на β-фазу, пескоструйной обработке и травлению. Готовые листы подвергались упрочняющей термической обработке. Прочностные свойства определялись путем проведения испытаний на растяжение при комнатной температуре.

Примеры 2-4 аналогичны примеру 1.

В таблице 1 приведено содержание легирующих элементов выплавленных слитков, механические свойства предлагаемого сплава и сплава-прототипа (таблица 2).

В заявленном сплаве в термически упрочненном состоянии значения пластичности (удлинения) повысились на 15-20%, предела ползучести - повысились на 7-10,5% при сохранении значений вязкости разрушения. Термическая стабильность после выдержки при 400°C в течение 500 ч превышает аналогичные характеристики сплава-прототипа.

Использование предлагаемого сплава на основе титана позволяет изготавливать различные конструктивные элементы силовых конструкций авиационной и космической техники, работающих при температурах до 350°C, что позволить повысить уровень эксплуатационных свойств и надежность по сравнению с традиционно применяемыми титановыми сплавами.

Похожие патенты RU2614356C1

название год авторы номер документа
Сплав на основе титана и изделие, выполненное из него 2015
  • Каблов Евгений Николаевич
  • Грибков Юрий Александрович
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Алексеев Евгений Борисович
RU2610657C1
СПЛАВ НА ОСНОВЕ ТИТАНА (ВАРИАНТЫ) И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2606677C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ВЫСОКОПРОЧНОГО СПЛАВА НА ОСНОВЕ ТИТАНА 2014
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Грибков Юрий Александрович
RU2569285C1
СПЛАВ НА ОСНОВЕ ТИТАНА И ПРУТКОВАЯ ЗАГОТОВКА ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА 2017
  • Бекмансуров Рустам Фанильевич
  • Ившин Антон Владимирович
  • Негодин Дмитрий Алексеевич
  • Поздеев Сергей Анатольевич
  • Скворцова Светлана Владимировна
  • Токарев Константин Александрович
  • Хлобыстов Дмитрий Олегович
  • Ярославцев Алексей Анатольевич
RU2690768C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2018
  • Ковальчук Михаил Валентинович
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Кулик Вера Петровна
  • Третьякова Наталья Валерьевна
  • Ледер Михаил Оттович
RU2690257C1
Интерметаллидный сплав на основе титана и изделие из него 2016
  • Антипов Владислав Валерьевич
  • Ночовная Надежда Алексеевна
  • Денисов Анатолий Яковлевич
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2627304C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2023
  • Калиенко Максим Сергеевич
  • Ледер Михаил Оттович
  • Волков Анатолий Владимирович
  • Панкратов Алексей Николаевич
  • Шушакова Елена Андреевна
  • Пастухов Дмитрий Сергеевич
  • Волкова Наталья Павловна
RU2812206C1
ЭКОНОМНОЛЕГИРОВАННЫЙ ТИТАНОВЫЙ СПЛАВ 2015
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Антипов Владислав Валерьевич
  • Панин Павел Васильевич
  • Боков Константин Александрович
RU2610193C1
ВТОРИЧНЫЙ ТИТАНОВЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Тетюхин Владислав Валентинович
  • Левин Игорь Васильевич
  • Пузаков Игорь Юрьевич
  • Таренкова Наталья Юрьевна
RU2436858C2
СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2016
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Алексеев Евгений Борисович
  • Ширяев Андрей Александрович
RU2614355C1

Реферат патента 2017 года Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве высокопрочного конструкционного термически упрочняемого материала. Сплав на основе титана содержит, мас.%: алюминий 1,5-4,5; ванадий 13,5-19,0; хром 2,0-5,0; олово 2,0-4,0; молибден 0,5-2,5; цирконий 0,5-2,5; ниобий 0,01-0,40; иттрий 0,005-0,150; титан и примеси - остальное. Сплав характеризуется высокими значениями пластичности, термической стабильности и предела ползучести в термически упрочненном состоянии при сохранении значений вязкости разрушения. 2 н. и 3 з.п. ф-лы, 2 табл., 4 пр.

Формула изобретения RU 2 614 356 C1

1. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, цирконий, олово, ниобий, отличающийся тем, что он дополнительно в качестве легирующего элемента содержит иттрий при следующем соотношении компонентов, мас.%:

алюминий 1,5-4,5 ванадий 13,5-19,0 хром 2,0-5,0 олово 2,0-4,0 молибден 0,5-2,5 цирконий 0,5-2,5 ниобий 0,01-0,40 иттрий 0,005-0,150 титан и примеси остальное

2. Сплав по п. 1, отличающийся тем, что дополнительно содержит кислород в количестве от 0,04 до 0,16 мас.%.

3. Сплав по п. 1, отличающийся тем, что суммарное содержание олова и циркония составляет 2,6-6,1 мас.%.

4. Сплав по п. 2, отличающийся тем, что взаимное соотношение алюминия и кислорода составляет от 40/1 до 20/1 в мас. долях.

5. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по п. 1.

Документы, цитированные в отчете о поиске Патент 2017 года RU2614356C1

СПЛАВ НА ОСНОВЕ ТИТАНА 1989
  • Тетюхин В.В.
  • Моисеев В.Н.
  • Хорев А.И.
  • Трубин А.Н.
  • Грибков Ю.А.
  • Антипов А.И.
  • Левин С.К.
  • Слобцов П.И.
  • Лиссов В.К.
  • Козлова Ф.И.
RU1621543C
0
  • Б. Б. Чечулин, В. Л. Руссо, И. С. Фатиев, В. И. Михайлов А. В. Моклаков
SU406676A1
JP 2006034414 A, 09.02.2006
US 2007175552 A1, 02.08.2007
JP 2004068146 A, 04.03.2004.

RU 2 614 356 C1

Авторы

Каблов Евгений Николаевич

Антипов Владислав Валерьевич

Ширяев Андрей Александрович

Грибков Юрий Александрович

Алексеев Евгений Борисович

Новак Анна Викторовна

Даты

2017-03-24Публикация

2016-04-13Подача