ГАЗОСБОРНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА Российский патент 2015 года по МПК C25C3/22 

Описание патента на изобретение RU2569866C1

Изобретение относится к области цветной металлургии, в частности к производству алюминия электролизом расплавов, и может быть использовано на электролизерах для получения алюминия.

Известно газосборное устройство алюминиевого электролизера, заключенного в катодный кожух, содержащее прямые и угловые секции, подвешенные по всему периметру нижней части анодного кожуха, при этом нижняя кромка секции установлена от анодного кожуха на расстоянии, равном 0,4÷0,6 расстояния между анодным кожухом и стенкой катодного кожуха (Патент РФ №2324012, опубл. 10.05.2008 г., бюл. №13).

Недостатками известного газосборного устройства являются значительная площадь наружной поверхности и высокие потери тепла через нее в окружающую среду, на компенсацию которых затрачивается значительная часть электроэнергии, потребляемой электролизером, в удельном исчислении до 600-700 кВт·ч/т Al.

Известна секция газосборного колокола алюминиевого электролизера, изготовленная из смеси порошкообразных оксида алюминия и металлического алюминия с жидким стеклом согласно способу (Авт. свид. SU №1578234, опубл. 15.07.1990 г., бюл. №26). Изготовленная из порошкообразных материалов секция обладает низкой теплопроводностью и меньшими, в сравнении с чугунной, потерями тепла в окружающую среду.

Недостатками известной секции являются риск пропитки порошкообразных материалов испаряющимися с поверхности расплава фтористыми солями, увеличение их объема и, как следствие, разрушение секции, а также ее хрупкость и риск поломки при воздействии инструментом (лом, скребок), применяемом при выполнении технологических операций.

Задачей настоящего изобретения является снижение потерь тепла конструктивными элементами электролизера в окружающую среду и затрат электроэнергии на их компенсацию.

Достигается это тем, что газосборное устройство алюминиевого электролизера, содержащее прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха, оборудовано теплоизолирующим слоем, для чего секции выполнены пустотелыми и между их внутренней и наружной стенками размещен теплоизолирующий слой высотой h, равной 0,7-0,8 высоты H секции газосборного устройства.

Целесообразность оборудования газосборного устройства теплоизолирующим слоем обусловлена тем, что порядка 1,5-2,5% энергии, потребляемой электролизером, через поверхность секций рассеивается в окружающую среду в виде тепла, и уменьшение этих потерь является существенным резервом снижения потребления электролизером электроэнергии.

Пустотелость секций обусловлена необходимостью защиты теплоизолирующего слоя от воздействия расплава, а также инструмента, используемого при выполнении технологических операций.

Отношение высоты слоя тепловой изоляции к высоте секции газосборного устройства обосновывается следующим. Согласно требованиям технологических инструкций, нижняя кромка секций газосборного устройства во время работы электролизера присыпается глиноземом, что предупреждает подсосы воздуха и выбивание газа из-под него. При этом высота слоя глинозема, являющегося также и теплоизоляцией, на нижней кромке секции должна быть в пределах 5-10 см, что составляет 0,2-0,3 высоты секции газосборного устройства. Следовательно, изоляция высотой более 0,8 высоты секции будет дублировать теплоизолирующие свойства глиноземной засыпки. Уменьшение высоты слоя изоляции менее 0,7 высоты секции приведет к увеличению потерь тепла электролизером через незащищенный участок газосборного устройства.

Сущность заявляемого изобретения заключается в следующем. Потери тепла через поверхность газосборного устройства электролизера с верхним токоподводом составляют порядка 35 кВт, и на их компенсацию расходуется 600-700 кВт·ч электроэнергии. Оборудование секций газосборного устройства тепловой изоляцией позволяет существенно снизить эти потери, в частности, при использовании в качестве теплоизоляции асбестового материала, коэффициент теплопроводности которого составляет 0,2 Вт/м·К, в 1,5-2 раза, при использовании вспученного вермикулита, коэффициент теплопроводности которого 0,05 Вт/м·К - в 2-3 раза, что подтверждено результатами опытно-промышленных испытаний. Таким образом, удельные затраты электроэнергии на компенсацию тепловых потерь, а следовательно - удельный расход электроэнергии на производство алюминия снижаются на 250-400 кВт·ч/т Al.

Заявляемое устройство поясняется рисунками. На фиг. 1 изображен фрагмент газосборного устройства алюминиевого электролизера, содержащего прямые 1 и угловую 2 секции. На фиг. 2 изображен разрез прямой секции газосборного устройства, между внутренней 3 и наружной 4 стенками которой размещен теплоизолирующий слой 5, а сама секция с помощью зацепа 6 крепится к анодному кожуху. На фиг. 3 изображен разрез угловой секции газосборного устройства, между внутренней 3 и наружной 4 стенками которой размещен теплоизолирующий слой 5, а сама секция с помощью зацепа 6 также крепится к анодному кожуху.

Устройство работает следующим образом. Тепло, передающееся от электролизера прямым 1 и угловым 2 секциям газосборного устройства теплопроводностью, конвекцией и излучением передается в окружающую среду. При оборудовании секций газосборного устройства теплоизолирующим слоем 5, размещенным между наружной 3 и внутренней 4 стенками, потери тепла снижаются, поскольку коэффициент теплопроводности тепловой изоляции в 280-1120 раз ниже теплопроводности чугуна, материала, из которого изготовлены секции и коэффициент теплопроводности которого составляет 56 Вт/м·К. Соответственно, температура наружной стенки секции газосборного устройства снижается на 100°C и более. Таким образом, снижаются потери тепла теплопроводностью и конвекцией, которые зависят от разности температур внутренней и наружной стенок и от площади теплоотдающей поверхности, а также потери тепла излучением, величина которых также определяется температурой тела, сокращаются в 1,5-3 раза и более. Соответственно, удельные затраты электроэнергии на компенсацию тепловых потерь, а следовательно - удельный расход электроэнергии на производство алюминия снижаются на 250-400 кВт·ч/т Al.

Похожие патенты RU2569866C1

название год авторы номер документа
ЗАЩИТА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА С ВЕРХНИМ ТОКОПОДВОДОМ 2013
  • Шахрай Сергей Георгиевич
  • Бажин Владимир Юрьевич
  • Кондратьев Виктор Викторович
  • Белянин Александр Владимирович
  • Гронь Вера Александровна
RU2532792C1
СПОСОБ И УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ТЕПЛА АНОДНЫХ ГАЗОВАЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2014
  • Шахрай Сергей Георгиевич
  • Поляков Петр Васильевич
  • Кондратьев Виктор Викторович
  • Белянин Александр Владимирович
  • Шайдулин Евгений Рашидович
  • Пискажова Татьяна Валерьевна
RU2558813C1
СПОСОБ ФОРМИРОВАНИЯ САМООБЖИГАЮЩЕГОСЯ АНОДА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА С ВЕРХНИМ ТОКОПОДВОДОМ 2004
  • Тонких Н.В.
  • Сторожев Ю.И.
  • Поляков П.В.
  • Стеблин К.И.
  • Манн В.Х.
  • Бузунов В.Ю.
  • Гребенников М.П.
RU2255146C1
ГАЗОСБОРНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА (ВАРИАНТЫ) 2006
  • Шахрай Сергей Георгиевич
  • Куликов Борис Петрович
  • Петров Александр Михайлович
  • Сугак Евгений Викторович
  • Кучкин Александр Григорьевич
  • Фризоргер Владимир Константинович
RU2324012C2
ГОРЕЛОЧНОЕ УСТРОЙСТВО С ДЕФОРМИРУЕМЫМИ СТЕНКАМИ ДЛЯ ДОЖИГАНИЯ АНОДНЫХ ГАЗОВ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2009
  • Сторожев Юрий Иванович
  • Поляков Петр Васильевич
  • Дектерев Александр Анатольевич
  • Необъявляюший Павел Анатольевич
  • Черкасов Евгений Иванович
  • Петрова Яна Игоревна
RU2393273C1
КАТОДНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2021
  • Бурцев Алексей Геннадьевич
  • Гусев Александр Олегович
  • Скуратов Сергей Владимирович
  • Манн Виктор Христьянович
RU2770602C1
УСТРОЙСТВО ОТВОДА ГАЗОВ ИЗ-ПОД ПОДОШВЫ САМООБЖИГАЮЩЕГОСЯ АНОДА 2013
  • Шахрай Сергей Георгиевич
  • Поляков Петр Васильевич
  • Белянин Александр Владимирович
  • Шайдулин Евгений Рашидович
  • Пискажова Татьяна Валерьевна
  • Кондратьев Виктор Викторович
  • Гронь Вера Александровна
RU2542180C1
СПОСОБ УКРЫТИЯ АНОДНОГО МАССИВА 2015
  • Шахрай Сергей Георгиевич
  • Поляков Петр Васильевич
  • Скуратов Александр Петрович
  • Архипов Геннадий Викторович
  • Шайдулин Евгений Рашидович
  • Михалев Юрий Глебович
  • Бажин Владимир Юрьевич
  • Агапитов Сергей Викторович
  • Ясинский Андрей Станиславович
  • Авдеев Юрий Олегович
RU2586184C1
КАТОДНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2006
  • Бурцев Алексей Геннадьевич
  • Гусев Александр Олегович
  • Деревянко Валерий Александрович
RU2321682C2
Анодный кожух алюминиевого электролизера с верхним токоподводом 1984
  • Кулеш Михаил Константинович
SU1236001A1

Иллюстрации к изобретению RU 2 569 866 C1

Реферат патента 2015 года ГАЗОСБОРНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Изобретение относится к газосборному устройству алюминиевого электролизера. Газосборное устройство алюминиевого электролизера содержит прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха. Секции выполнены пустотелыми и между их внутренней и наружной стенками размещен теплоизолирующий слой высотой h, равной 0,7-0,8 высоты H секции газосборного устройства. Обеспечивается снижение удельного расхода электроэнергии на производство алюминия, на 250-400 кВт·ч/т Al. 3 ил.

Формула изобретения RU 2 569 866 C1

Газосборное устройство алюминиевого электролизера, содержащее прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха, отличающееся тем, что упомянутые секции выполнены пустотелыми, при этом между их внутренней и наружной стенками размещен теплоизолирующий слой, высота h которого составляет 0,7-0,8 высоты H секции газосборного устройства.

Документы, цитированные в отчете о поиске Патент 2015 года RU2569866C1

Способ изготовления секции газосборного колокола алюминиевого электролизера 1988
  • Степанов Виктор Тихонович
  • Аносов Виктор Федорович
  • Афракова Тамара Федоровна
  • Лавренчук Евгений Емельянович
  • Гринберг Игорь Самсонович
  • Беляев Леонид Александрович
SU1578234A1
ГАЗОСБОРНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА (ВАРИАНТЫ) 2006
  • Шахрай Сергей Георгиевич
  • Куликов Борис Петрович
  • Петров Александр Михайлович
  • Сугак Евгений Викторович
  • Кучкин Александр Григорьевич
  • Фризоргер Владимир Константинович
RU2324012C2
КОЛОКОЛЬНЫЙ ГАЗОСБОРНИК АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2005
  • Куликов Борис Петрович
  • Сторожев Юрий Иванович
  • Лагунов Денис Александрович
RU2303660C2
Дорн для непрерывного литья полых заготовок 1987
  • Дубоносов Виктор Алексеевич
  • Терентьев Финоген Гаврилович
  • Марченко Иван Константинович
  • Царев Александр Васильевич
SU1503985A1
JP 54120216 A, 18.09.1979
JP 54160506 A, 19.12.1979
JP 54163708 A, 26.12.1979.

RU 2 569 866 C1

Авторы

Шахрай Сергей Георгиевич

Скуратов Александр Петрович

Бажин Владимир Юрьевич

Белянин Александр Владимирович

Кондратьев Виктор Викторович

Голдаев Сергей Васильевич

Николаев Виктор Николаевич

Шарыпов Никита Анатольевич

Пьяных Артем Анатольевич

Даты

2015-11-27Публикация

2014-07-04Подача