СПЛАВ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2015 года по МПК C01B3/08 

Описание патента на изобретение RU2571131C1

Изобретение относится к области химии и может быть использовано для получения водорода.

Известна гидрореагирующая композиция для получения водорода, содержащая алюминий и активирующий сплав из группы металлов: галлий, индий, олово и цинк при следующем соотношении компонентов, масс.%: индий 10-40: олово 1-40; цинк 1-20; галлий - остальное, причем алюминий и активирующий сплав входят в состав композиции при следующем соотношении компонентов, масс.%: активирующий сплав 1-10; алюминий - остальное (патент RU 2394753, МПК C01B 3/08, 2010 г.). Известная композиция обеспечивает высокий выход выделившегося водорода (в пересчете на металлический алюминий 98-98,5%).

Однако известная композиция имеет недостатки: ухудшение реакционных свойств с течением времени при хранении на воздухе, многостадийность получения.

Известен сплав на основе алюминия для генерирования водорода (патент RU 2253606, МПК C01B 3/08, 2005 г.) на основе алюминия и в качестве добавки обезвоженного гидроксида щелочного металла (натрия, лития или калия) в весовом количестве до 10% или обезвоженного гидроксида щелочного металла и медь до 5% так, чтобы в сумме этот сплав содержал эти добавки до 10% (прототип).

Недостатками известного сплава на основе алюминия для генерирования водорода являются его сложный состав с использованием гидроксида щелочного металла, высокая энергоемкость и технологическая трудоемкость его получения, при этом полнота газовыделения по сравнению с теоретической не достигает максимальной величины и составляет 92%.

Таким образом, перед авторами стояла задача разработать простой по составу сплав для получения водорода, характеризующийся наряду с этим высокой полнотой газовыделения.

Поставленная задача решена в составе сплава для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, который в качестве добавки содержит лантан, при следующем соотношении компонентов, масс. %:

лантан 1,5÷3,0 алюминий остальное.

В настоящее время из патентной и научно-технической литературы не известен сплав для получения водорода предлагаемого состава, содержащий компоненты в предлагаемых интервалах значений.

Авторами были проведены исследования по определению оптимального состава сплава, в частности авторами экспериментально установлено (методом РФЭС) наличие значительной сегрегации лантана на поверхности алюминиевых порошков. Лантан также является и слабо снижающим поверхностное натяжение алюминия элементом, при этом наиболее активно из ряда РЗМ взаимодействует с водой. Высокая поверхностная и химическая активность лантана позволяет активизировать процесс окисления в воде порошков на основе алюминия, наличие щелочной среды приводит к разрушению оксидной пленки и ускорению выделения водорода, а также к повышению полноты протекания процесса (степени превращения), практически до полного окисления металла. Экспериментальным путем авторами установлены пределы количественного содержания добавки, оказывающие влияние на получения положительного технического результата. Так, при содержании добавки менее 1,5 масс. % наблюдается снижение гидрореакционной активности алюминиевого сплава. Содержание добавки в количестве 1,5-3,0 масс. % обеспечивает оптимальную концентрацию ее на поверхности порошка сплава и тем самым достигается наибольшая активность при взаимодействии с водой. Дальнейшее увеличение содержания более 3 масс. % является нецелесообразным и не увеличивает выход водорода.

Предлагаемый порошок сплава может быть получен методом газоплазменной переконденсации. При получении использован замкнутый газовый цикл. Предварительно систему вакуумируют до остаточного давления 5. 10-3 мм рт. ст. и заполняют инертным газом (аргоном). В качестве реактора используют плазменный испаритель-конденсатор ИК-150.

Режимы обработки следующие: электрическая мощность реактора - 15-25 кВт (I - 90 A, U - 180-250 В); расход технологического газа: в дозатор сырья - 3 нм3/ч, в закалочный узел - 7 нм3/ч, в вихревую камеру - 15 нм3/ч; расход сырья - 0,2 кг/ч. Исходное сырье (порошок алюминия с лантаном) загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000-6000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 100-200°C подают в холодильник, где охлаждают до температуры 60-80°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Получают ультрадисперсный порошок с размером частиц менее 300 нм. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару или перемещают в систему микрокапсулирования, где на поверхность частиц наносят защитный слой, предохраняющий их от внешних воздействий при контакте с воздухом. Удельную поверхность полученного порошка сплава определяют, например, методом тепловой десорбции аргона. При использовании предлагаемого сплава для получения водорода наряду с водородом получают гидроксиды соответствующих металлов, которые могут быть использованы, например, в качестве сорбентов, носителей каталитических систем.

Ниже приведены примеры, иллюстрирующие получение сплава предлагаемого состава.

Пример 1. Порошковый сплав, содержащий 98,5 г (98,5 масс. %) алюминия и 1,5 г (1,5 масс. %) лантана загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 200°C подают в холодильник, где охлаждают до температуры 80°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару. Удельная поверхность полученного порошка сплава равна 27 м2/г.

Пример 2. Порошковый сплав, содержащий 97,0 г (97,0 масс. %) алюминия, 3,0 г (3,0 масс. %) лантана загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 100°C подают в холодильник, где охлаждают до температуры 60°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару, где на поверхность частиц наносят защитный слой, предохраняющий их от внешних воздействий при контакте с воздухом. Удельная поверхность полученного порошка сплава равна 13 м2/г.

Способ применения предлагаемого гидрореагирующего сплава, используемого для получения водорода, включает приготовление суспензии ультрадисперсного порошка сплава в дистиллированной воде при соотношении сплав:Н2О=1:10-25 (вес. ч.) и проведение окисления при температурах 25-80°С.

Пример, иллюстрирующий способ использования предлагаемого сплава для получения водорода и оксидных продуктов соответствующих металлов, приведен ниже.

Пример 4. Берут 5 г сплава, включающего (масс. %): лантан 3,0; алюминий 97. Удельная поверхность порошка сплава - 13 м2/г.

Сплав при постоянном перемешивании помещают в реактор в воду комнатной температуры (21÷23°C). Объем воды в реакторе постоянен и составляет 12,5 мл.

Полученный гидроксид алюминия бемитной формы с небольшой примесью гидроксидов Са и La отфильтровывают и высушивают. Удельная поверхность оксидных продуктов реакции составляет 217 м2/г.

Содержание активного алюминия в продуктах реакции составляет 0,26%.

Полнота газовыделения (по сравнению с теоретической) составляет 97%.

Таким образом, авторами предлагается сплав на основе алюминия для получения водорода, характеризующийся простым составом наряду с высокой полнотой газовыделения (97-98%).

Похожие патенты RU2571131C1

название год авторы номер документа
КАТАЛИЗАТОР ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА 2004
  • Кононенко Владимир Иванович
  • Чупова Ирина Анатольевна
  • Шевченко Владимир Григорьевич
  • Торокин Владимир Викторович
RU2282495C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ СПЛАВОВ 2013
  • Новиков Александр Николаевич
RU2533622C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА НИТРИДА АЛЮМИНИЯ 2012
  • Новиков Александр Николаевич
RU2494041C1
СПОСОБ ПОЛУЧЕНИЯ ФРАКЦИОНИРОВАННЫХ УЛЬТРАДИСПЕРСНЫХ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ 2013
  • Новиков Александр Николаевич
RU2534089C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Кириллин В.И.
  • Добринский Э.К.
  • Красюков Е.А.
  • Малашин С.И.
RU2207933C2
СПОСОБ ПРИГОТОВЛЕНИЯ ПРИСАДКИ К СМАЗОЧНЫМ МАСЛАМ 2000
  • Добринский Э.К.
  • Малашин С.И.
RU2161180C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГИДРООКИСИ АЛЮМИНИЯ И ВОДОРОДА 2007
  • Могилевский Игорь Николаевич
RU2350563C2
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ АЛЮМИНИЙ-КРЕМНИЕВЫХ СПЛАВОВ 2012
  • Новиков Александр Николаевич
RU2493281C1
ПОЛУЧЕНИЕ НАНОСТРУКТУРИРОВАННЫХ СМЕШАННЫХ ОКСИДОВ ЛИТИЯ И ЦИРКОНИЯ ПОСРЕДСТВОМ СПРЕЙ-ПИРОЛИЗА 2020
  • Шэфер, Дурду
  • Виганд, Армин
  • Альфф, Харальд
  • Таката, Рё
  • Шмидт, Франц
RU2823631C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ МЕТАЛЛА ИЛИ МЕТАЛЛИЧЕСКИХ СПЛАВОВ 2015
  • Новиков Александр Николаевич
RU2588931C1

Реферат патента 2015 года СПЛАВ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан- 1,5÷3,0 мас.%, алюминий - остальное. Изобретение позволяет получить сплав, характеризующийся простым составом наряду с высокой полнотой газовыделения. 3 пр.

Формула изобретения RU 2 571 131 C1

Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, отличающийся тем, что он содержит в качестве добавки лантан при следующем соотношении компонентов, мас. %:
лантан 1,5÷3,0; алюминий остальное.

Документы, цитированные в отчете о поиске Патент 2015 года RU2571131C1

CN 101948092 A, 09.06.2015
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ГЕНЕРИРОВАНИЯ ВОДОРОДА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ГАЗОГЕНЕРАТОР ВОДОРОДА 2004
  • Терещук В.С.
RU2253606C1
Сплав для получения водорода 1989
  • Хазин Марк Леонтьевич
  • Негодаева Наталья Юрьевна
  • Жучков Владимир Иванович
  • Павлов Валерий Васильевич
  • Трошенькин Борис Александрович
  • Завьялов Александр Львович
  • Юрманов Владимир Александрович
SU1675199A1
Способ получения водорода 1959
  • Беляев А.П.
  • Гольштейн Р.М.
SU125549A1
CN 101289163 A, 22.10.2008
JP 2010006673 A, 14.01.2010.

RU 2 571 131 C1

Авторы

Шевченко Владимир Григорьевич

Чупова Ирина Анатольевна

Даты

2015-12-20Публикация

2014-07-01Подача