Изобретение относится к области измерений параметров физико-химических процессов в системе теплоноситель - конструкционный материал и может быть использовано при определении скорости коррозии стали в свинце.
Известно техническое решение по определению скорости коррозии [J. Zhang *, N. Li. Analysis on liquid metal corrosion-oxidation interactions.// Corrosion Science 49 (2007) 4154-4184.)].
Скорость коррозии предлагается вычислять по формуле
W=0,434U0,875d-0,125Co-4/3(1-α)exp(-305796,8/(RT)), м/с
где W - скорость коррозии стали в свинцовом теплоносителе, м/с; U - скорость свинца, м/с; d - гидравлический диаметр канала, м; Co - концентрация насыщения кислорода в свинце, вес. %; α - отношение пристеночной концентрации железа в свинце к средней по объему; R - универсальная газовая постоянная, Дж/К моль; T - температура теплоносителя, К.
К недостаткам этого способа относится то, что для использования приведенной формулы необходимо определение концентрации железа в свинце. В то же время пока не существует надежных методов ее определения, а приближенные расчетные методы могут дать погрешность более 1000%.
Наиболее близким по технической сущности к заявляемому решению является способ определения скорости коррозии стали в свинцовом теплоносителе [Алексеев В.В., Орлова Е.А., Козлов Ф.А., Торбенкова И.Ю. Моделирование процессов массопереноса и коррозии сталей в ядерных энергетических установках со свинцовым теплоносителем (часть 1): Препринт №3128. Обнинск: ГНЦ РФ-ФЭИ, 2008. 22 с.].
В работе представлено математическое описание процесса оксидирования при формировании двухслойной оксидной пленки на поверхности стали в свинцовом теплоносителе, включающее более 20 уравнений. Совместное решение полученных уравнений при заданных граничных условиях (гидродинамические и температурные режимы, активность кислорода в свинце, состав стали и оксидов) позволяет рассчитывать динамику образования (или растворения) оксидных слоев, их толщину, а также потоки железа, выходящего из стали и поступающего в теплоноситель. Разработаны алгоритм совместного решения уравнений, описывающих рассматриваемый процесс, и соответствующая программа расчета на ЭВМ. На основании полученных данных может быть рассчитана скорость коррозии стали.
К недостатку известного способа относятся сложность алгоритма расчета потока железа, определяющего скорость коррозии стали, отсутствуют стандартные методы решения полученной системы уравнений, и незавершенность способа, поскольку в математическом описании процесса коррозии отсутствует в явном виде формула для расчета скорости коррозии стали.
Задачей изобретения является упрощение процедуры определения скорости коррозии стали в свинцовом теплоносителе.
Технический результат состоит в уменьшении трудоемкости при определении скорости коррозии.
Для исключения указанного недостатка в способе определения скорости коррозии стали в свинцовом теплоносителе предлагается:
- определять термодинамическую активность кислорода в свинце, например, с использованием электрохимического активометра, в интервале 10-4÷1,0; температуру свинца в интервале 450°C ÷ 650°C; среднюю скорость свинца в потоке, омывающем поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с;
- скорость коррозии определять по приближенному полуэмпирическому соотношению с учетом эмпирических коэффициентов, температуры свинца, термодинамической активности кислорода в свинце, времени пребывания стали в свинце в режиме оксидирования, времени предварительного оксидирования поверхности стали в свинце, показателя степени и плотности стали.
В частных случаях реализации способа предлагаются численные значения эмпирических коэффициентов применительно к определению скорости коррозии сталей ЭИ-852 и ЭП-823.
Способ определения скорости коррозии стали в свинцовом теплоносителе включает определение термодинамической активности кислорода в свинце, например с использованием электрохимического активометра. Определение скорости коррозии стали в свинцовом теплоносителе выполняют для следующих диапазонов изменения физико-химических характеристик: термодинамическая активность кислорода в свинце в интервале 10-4÷1,0; температура свинца в интервале 450°C ÷ 650°C; средняя скорость свинца в потоке, омывающем поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с.
Скорость коррозии стали в потоке свинца определяют по приближенному полуэмпирическому соотношению
где W - скорость коррозии стали в свинцовом теплоносителе, м/с; k1 - эмпирический коэффициент, К; T - температура свинца; К; k2 - эмпирический коэффициент; ao - термодинамическая активность кислорода в свинце; k3 - эмпирический коэффициент, 1/сn; τ - время пребывания стали в свинце в режиме оксидирования, с; n - показатель степени; τo - время предварительного оксидирования поверхности стали в свинце, с; ρ - плотность стали, кг/м3.
В частных случаях способ определения скорости коррозии стали в свинце реализуется соотношением (1) с использованием следующих эмпирических коэффициентов: k1=- 22100 К, k2=-3,97, k3=4,6·10-8 1/сn; n=0,4 для стали ЭП-823, и k1=-16210 К, k2=-10,8, k3=4,2·10-8 1/сn; n=0,44 для стали ЭИ-852.
Пример конкретного осуществления способа
Производятся замеры термодинамической активности кислорода в свинце с использованием электрохимического активометра и температуры в исследуемом участке контура со свинцовым теплоносителем. Магнитным расходомером измеряется расход свинца через исследуемый участок, откуда рассчитывается средняя скорость теплоносителя в потоке, омывающем поверхность, как отношение объемного расхода свинца к проходному сечению каналов. Фиксируется время нахождения стали в свинце для заданного режима работы контура, а также время предварительного оксидирования поверхности стали (например, по данным рабочего журнала и технической документации на установку).
В результате измерений получено: Т=923, К; ao=0,01; U=1,0 м/с.
Известно, что сталь была предварительно оксидирована в течение τo=8,64·105 с.
Для рассматриваемого примера время пребывания стали в свинце в режиме оксидирования составляет τ=107, с.
Расчет скорости коррозии проводится для стали ЭП-823 по формуле (1).
Для расчета используются значения эмпирических коэффициентов:
k1=-22100 К, k2=-3,97, k3=4,6·10-8 1/сn; n=0,42.
Плотность стали составляет ρ=7800, кг/м3.
На чертеже представлена полученная расчетным путем зависимость скорости коррозии стали в свинцовом теплоносителе от времени, на которой 1 соответствует расчетной кривой, 2 - экспериментальной точке.
Результаты расчета скорости коррозии для всего диапазона времени оксидирования стали приведены на чертеже (кривая 1): результаты расчета скорости коррозии стали ЭП-823 от времени при Т=650°C, ao=0,01: 1 - расчетная кривая; 2 - экспериментальная точка [Abramov V.Y., Bozin S.N., Evropin S.V. et al. Corrosion and mechanical properties of BREST-OD-300 reactor structural materials. // 11-th International conference on nuclear engineering. Tokyo, Japan, April 20-23, 2003. ICONE11-36413]. Расчетная скорость коррозии стали в искомой точке составляет 1,23 10-12 м/с (при τ=107, с). На чертеже показана также экспериментальная точка, обозначенная цифрой 2. Из сопоставления полученных данных с экспериментом следует, что их отличие не превышает 15%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОРМИРОВАНИЯ ЗАЩИТНОГО ОКСИДНОГО ПОКРЫТИЯ НА СТАЛЬНОЙ ПОВЕРХНОСТИ В РАСПЛАВЕ Pb-Bi | 2015 |
|
RU2603761C2 |
СПОСОБ ЗАЩИТЫ КОНСТРУКЦИОННЫХ СТАЛЕЙ ОТ КОРРОЗИИ В СВИНЦОВОМ ТЕПЛОНОСИТЕЛЕ И ЕГО РАСПЛАВАХ | 2005 |
|
RU2286401C1 |
ТВЭЛ РЕАКТОРА ТИПА БРЕСТ И СПОСОБ ЛЕГИРОВАНИЯ СВИНЦА ДЛЯ ТЕПЛОПЕРЕДАЮЩЕГО ПОДСЛОЯ ТВЭЛА | 2004 |
|
RU2270486C1 |
СТАЛЬ ДЛЯ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ АТОМНЫХ РЕАКТОРОВ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ | 2002 |
|
RU2238345C2 |
СПОСОБ ВНУТРИКОНТУРНОЙ ПАССИВАЦИИ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ ЯДЕРНОГО РЕАКТОРА | 2013 |
|
RU2542329C1 |
СПОСОБ ВНУТРИКОНТУРНОЙ ПАССИВАЦИИ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ ЯДЕРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ | 2013 |
|
RU2543573C1 |
СПОСОБ ВЫПЛАВКИ НИЗКОФОСФОРИСТОЙ СТАЛИ В КОНВЕРТЕРЕ | 2011 |
|
RU2459874C1 |
СПОСОБ ЗАЩИТЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ОТ КОРРОЗИИ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ В ЖИДКОМ СВИНЦЕ, ВИСМУТЕ И ИХ СПЛАВАХ | 1993 |
|
RU2066710C1 |
СПОСОБ ОЦЕНКИ ИНДУКЦИОННОГО ПЕРИОДА АВТОМОБИЛЬНЫХ БЕНЗИНОВ | 2014 |
|
RU2572723C1 |
Способ поддержания концентрации кислорода в свинце в ампульном облучательном устройстве | 2022 |
|
RU2797437C1 |
Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10-4÷1,0, температуры свинца в интервале 450°С ÷ 650°С, средней скорости свинца в потоке свинцового теплоносителя, омывающего поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с, по соотношению:
где W - скорость коррозии стали в свинцовом теплоносителе, м/с, k1 - эмпирический коэффициент, К, T - температура свинца, К, k2 - эмпирический коэффициент, ao - термодинамическая активность кислорода в свинце, k3 - эмпирический коэффициент, 1/сn, τ - время пребывания стали в свинце в режиме оксидирования, с, n - показатель степени, τo - время предварительного оксидирования поверхности стали в свинце, с, ρ - плотность стали, кг/м3, при этом для стали ЭП-823 используют k1=-22100 К, k2=-3,97, k3=4,6·10-8 1/сn; n=0,42, а для стали ЭИ-852 используют k1=-16210 К, k2=-10,8, k3=4,2·10-8 1/сn; n=0,44. Технический результат - снижение трудоемкости при определении скорости коррозии. 1 з.п. ф-лы, 1 ил., 1 пр.
1. Способ определения скорости коррозии оксидированной стали в свинцовом теплоносителе, отличающийся тем, что скорость коррозии определяют для термодинамической активности кислорода в свинце в интервале 10-4÷1,0, температуры свинца в интервале 450°С ÷ 650°С, средней скорости свинца в потоке свинцового теплоносителя, омывающего поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с, по соотношению:
где W - скорость коррозии стали в свинцовом теплоносителе, м/с,
k1 - эмпирический коэффициент, К,
T - температура свинца, К,
k2 - эмпирический коэффициент,
ao - термодинамическая активность кислорода в свинце,
k3 - эмпирический коэффициент, 1/сn,
τ - время пребывания стали в свинце в режиме оксидирования, с,
n - показатель степени,
τo - время предварительного оксидирования поверхности стали в свинце, с,
ρ - плотность стали, кг/м3,
при этом для стали ЭП-823 используют k1=-22100 К, k2=-3,97, k3=4,6·10-8 1/сn; n=0,42,
а для стали ЭИ-852 используют k1=-16210 К, k2=-10,8, k3=4,2·10-8 1/сn; n=0,44.
2. Способ по п.1, отличающийся тем, что термодинамическую активность кислорода в свинце определяют с использованием электрохимического активометра.
J.ZHANG et al | |||
Способ смешанной растительной и животной проклейки бумаги | 1922 |
|
SU49A1 |
СПОСОБ ПОДДЕРЖАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ СТАЛЬНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА СО СВИНЕЦСОДЕРЖАЩИМ ТЕПЛОНОСИТЕЛЕМ | 1996 |
|
RU2100480C1 |
СПОСОБ КОНТРОЛЯ ПИТТИНГОВОЙ КОРРОЗИИ ВНУТРЕННИХ СТЕНОК ХРАНИЛИЩ, СОСУДОВ И АППАРАТОВ | 2009 |
|
RU2424378C2 |
СПОСОБ ПОДДЕРЖАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ СТАЛЬНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА СО СВИНЕЦСОДЕРЖАЩИМ ТЕПЛОНОСИТЕЛЕМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) | 2003 |
|
RU2246561C1 |
Авторы
Даты
2015-12-20—Публикация
2014-09-30—Подача