Изобретение относится к производству серы и может найти применение при изготовлении конденсатора серы.
В патенте США №4526590 описаны способ и устройство для извлечения пара серы из газа процесса Клауса. С этой целью технологический газ охлаждают на холодной поверхности в теплообменнике для осаждения большей части пара серы в виде твердой формы. Время от времени путем нагрева твердую серу удаляют из теплообменника. Во время этого нагрева осажденная сера переходит в жидкую фазу, после чего сера вытекает из теплообменника. Во второй охлаждающей секции конденсируется присутствующий в технологическом газе водяной пар.
Кроме того факта, что этот способ сложен, существует недостаток, заключающийся в том, что конденсация технологической воды приводит к серьезным проблемам с коррозией и закупоркой оборудования. В соответствии с этим способ по патенту США №4526590 не внедрен в практику.
В патентах США №2876070 и 2876071 описан способ, аналогичный описанному в патенте США №4526590, однако без конденсации водяного пара. Установки, используемые в этих процессах, отличаются наличием запорных вентилей, которые периодически открывают. Когда запорные вентили находятся в закрытом положении, используемый теплообменник может быть выведен из процесса с целью удаления твердой серы из труб теплообменника путем нагрева до температуры выше точки плавления серы.
Недостаток этих способов заключается в присутствии запорных вентилей в магистралях используемых установок. Такие запорные вентили приводят к высоким инвестиционным затратам, вызывают перепад давления, приводят к проблемам при работе и обслуживании, а также они подвержены поломкам.
Вследствие проблем, связанных с известными способами, в которых используется осаждение твердой серы, а более конкретно проблем с закупоркой, сложилось преобладающее мнение, что обрабатываемый газовый поток, в котором содержится оставшаяся сера, следует охлаждать до температуры по меньшей мере более высокой, чем точка затвердевания серы. В этом случае сера переходит в жидкую форму. Путем обеспечения того, что теплообменник наклонен под углом к горизонтальной плоскости, жидкая сера может стекать вниз в грязеотстойник. В этих обычных устройствах для конденсации серы жидкая сера стекает в сопутствующем газу потоке.
Если используется такой способ конденсации, из обрабатываемого газа удаляется не вся сера. Это в основном связано с более высоким давлением паров серы в жидком состоянии по сравнению с давлением паров серы в твердом состоянии. В случае серы в жидком состоянии давление паров выше примерно в 10 раз. Если говорить цифрами, давление паров серы падает от 8 Па при 130°C до 0,7 Па при 100°C.
Наиболее близким к предложенному изобретению по технической сущности является способ и устройство для удаления элементарной серы, присутствующей в газе в форме пара и/или увлеченных частиц, в котором обрабатываемый газ охлаждают до температуры между точкой конденсации паров воды и 120°C. Обрабатываемый газ с температурой 120-300°C вводят в теплообменник в его нижнюю часть и с помощью температуры и/или скорости течения охлаждающей среды обеспечивают температуру стенки теплообменника ниже точки отвердевания серы и выше точки конденсации воды, если какое-либо количество таковой присутствует в газе. Осажденная сера удаляется под действием гравитации в противоточном с обрабатываемым газом потоке. Процесс осуществляют в трубчатом или пластинчатом теплообменнике, расположенном вертикально или наклонно (патент РФ №2102121, кл. B01D 53/48, опубл. 20.01.1998 - прототип).
Недостатком известного технического решения является неполное удаление серы из газа.
В предложенном изобретении решается задача обеспечения полного удаления серы из газа.
Задача решается тем, что в конденсаторе серы, включающем трубчатый теплообменник, согласно изобретению трубчатый теплообменник расположен горизонтально, на выходе из трубного пространства трубчатого теплообменника расположена приемная камера, в верхней части которой размещен выходной штуцер газа и сетка, подогреваемая посредством змеевика, заполненного теплоносителем, а в нижней части вертикально под сеткой расположен выходной штуцер серы с кожухом, заполненным теплоносителем, межтрубное пространство трубчатого теплообменника заполнено теплоносителем, при этом в качестве теплоносителя межтрубное пространство трубчатого теплообменника, змеевик и кожух заполнены водным раствором диэтиленгликоля с рабочей температурой 120°C на входе в межтрубное пространство трубчатого теплообменника и 180°C на выходе из межтрубного пространства трубчатого теплообменника, выход из межтрубного пространства трубчатого теплообменника соединен со входом в змеевик подогрева сетки и со входом в кожух обогреваемого выходного штуцера, выходы из змеевика подогрева сетки и из кожуха обогреваемого выходного штуцера соединены с установкой термической подготовки теплоносителя, а установка подготовки теплоносителя соединена с входом в межтрубное пространство трубчатого теплообменника.
Сущность изобретения
В существующих технических решениях, посвященных отделению серы от серосодержащего газа, возникают две проблемы: сера или закупоривает трубы теплообменника, или не полностью отделяется от газа, в результате часть серы уносится вместе с газом. При этом не обеспечивают полного отделения серы ни наклонные, ни вертикальные теплообменники, ни подбор температуры охлаждения серы в теплообменнике. В предложенном изобретении решается задача обеспечения полного удаления серы из газа. Задача решается конденсатором серы, представленным на фиг. 1, 2.
На фиг. 1 представлен общий вид конденсатора серы.
Конденсатор серы состоит из трубчатого теплообменника 1 с распределительной камерой 2 трубного пространства в виде пучка труб 3, штуцером 4 распределительной камеры, межтрубного пространства 5, образованного корпусом 6 трубчатого теплообменника с входным штуцером 7 и выходным штуцером 8. На выходе из трубного пространства 3 трубчатого теплообменника 1 расположена приемная камера 9, в верхней части которой расположен выходной штуцер газа 10 и размещена сетка 11, подогреваемая посредством змеевика 12, заполненного теплоносителем 13, а в нижней части приемной камеры 9 вертикально под сеткой 11 расположен выходной штуцер серы 14 с кожухом 15, заполненным теплоносителем 13. Межтрубное пространство 5 трубчатого теплообменника 1 заполнено теплоносителем 13. В качестве теплоносителя использован водный раствор диэтиленгликоля предпочтительно 50%-ной концентрации с рабочей температурой 120°C на входе в межтрубное пространство 5 в районе входного штуцера 7 и 180°C на выходе из межтрубного пространства 5 в районе выходного штуцера 8. Выходной штуцер 8 из межтрубного пространства 5 соединен трубопроводом 16 со входом 17 в змеевик 12 подогрева сетки 11 и трубопроводом 18 со входом 19 в кожух 15 выходного штуцера серы 14. Выход 20 из змеевика 12 подогрева сетки 11 и выход 21 из кожуха 15 выходного штуцера серы 14 соединены трубопроводами соответственно 22 и 23 со входом в установку термической подготовки теплоносителя 24. Выход 25 из установки подготовки теплоносителя 24 соединен с входным штуцером 7 корпуса 6, т.е. входом в межтрубное пространство 5 трубчатого теплообменника 1, трубопроводом 26.
Каркас сетки 11 представляет собой пакет из нарубленных по размеру фильтрующего каркаса листов и уложенных полистно вокруг змеевика 12. Сетка 11 уложена между листами каркаса, стальная из низкоуглеродистой термически необработанной проволоки плетеная одинарная с квадратной ячейкой 15×15 мм с диаметром проволоки 2,0 мм.
На фиг. 2 представлен общий вид трубчатого теплообменника.
На фиг. 2 трубчатый теплообменник 1 состоит из решетки трубной большого диаметра 27, поперечных перегородок 28, соединенных стяжками 29 и дистанционными трубками 30, а также трубами 3, установленными в отверстия 31 поперечных перегородок 28, и решетки трубной малого диаметра 32. Корпус 6 состоит из решетки трубной малого диаметра 32, сваренной с кожуховой трубой 33.
Предложенная конструкция теплообменника позволяет создать строго параллельное расположение элементов теплообменника и тем самым исключить осаждение серы в трубах 3.
Сборку корпуса 6 с пучком труб 3 выполняют, когда трубная решетка большего диаметра 27 пучка труб 3 выставлена вертикально и закреплена неподвижно в удерживающем приспособлении 34, а каркас из поперечных перегородок 28 стяжек 29, дистанционных труб 30 в сборе с трубами 3 установлен на опорную поверхность 35. При сборке открытым торцом кожуховой трубы 33 корпус 6 совмещают с пучком труб 3 до момента касания труб 3 решетки трубной малого диаметра 32. На следующем этапе устанавливают соосность каждой трубы 3 с отверстиями в трубной решетке малого диаметра 32 и выполняют замыкающий сварной шов 36 решетки трубной большого диаметра 27 с кожуховой трубой 33.
Применение описанной конструкции и технологии сборки позволяет полностью избежать изгибающих моментов, возникающих от веса решетки большого диаметра 27, выполнение качественного замыкающего сварного шва 36, чем достигается соосность при сборке пучка труб 3 с корпусом 6 конденсатора серы.
Конденсатор серы работает следующим образом.
Теплоноситель, охлажденный в установке подготовки теплоносителя 24 до 120°C, через выход 25 из установки подготовки теплоносителя 24 по трубопроводу 26 поступает через входной штуцер 7 корпуса 6 в межтрубное пространство 5 трубчатого теплообменника 1, проходит между трубами 3, нагревается до 180°C, проходит через выходной штуцер 8 из межтрубного пространства 5 и по трубопроводу 16 через вход 17 проходит в змеевик 12 подогрева сетки 11. Одновременно по трубопроводу 18 через вход 19 проходит в кожух 15 выходного штуцера серы 14. В змеевике 12 и кожухе 15 теплоноситель нагревает змеевик 12 и соответственно сетку 11 и выходной штуцер серы 14. Далее через выход 20 из змеевика 12 подогрева сетки 11 и выход 21 из кожуха 15 выходного штуцера серы 14, трубопроводы 22 и 23 теплоноситель поступает на охлаждение в установку термической подготовки теплоносителя 24.
Сернистый газ с рабочим давлением 0,015 МПа и рабочей температурой 215°C через штуцер 4 поступает в распределительную камеру 2, распределяется по трубам 3, проходит внутри труб 3, охлаждается до 120°C за счет контакта труб 3 с теплоносителем 13 в межтрубном пространстве 5, образуя кислотный газ и конденсат серы в жидком состоянии. Кислотный газ и сера в жидком состоянии поступают в приемную камеру 9. Поток кислотного газа в трубах 3 вытесняет жидкую серу из труб 3 в приемную камеру 9. За счет соосности труб 3 вся сера равномерно вытесняется из труб 3 в приемную камеру 9. В приемной камере 9 газ поднимается вверх, фильтруется, проходя через подогреваемую змеевиком 12 сетку 11, и выходит из штуцера газа 10. Отфильтрованные сеткой 11 частички серы расплавляются за счет подогрева сетки 11 змеевиком 12 и стекают вниз, попадая в выходной штуцер серы 14. Жидкая сера из труб 3 стекает в приемную камеру 9 и далее в выходной штуцер серы 14, соединенный с бункером серы (не показан). Для исключения застывания жидкой серы выходной штуцер серы 14 снабжен подогреваемым кожухом 15.
Теплоноситель используется как охладитель для охлаждения газа в трубах 3 и как теплоноситель для нагрева сетки 11 и выходного штуцера серы 14.
В результате удается полностью разделить сернистый газ и серу, исключить закупоривание труб и прочих элементов конденсатора серой, исключить унос серы сернистым газом.
название | год | авторы | номер документа |
---|---|---|---|
Аппарат для получения гранул из расплавов взрывчатых веществ | 1967 |
|
SU1841145A1 |
ПЛЕНОЧНЫЙ ТРУБЧАТЫЙ ТЕПЛОМАССООБМЕННЫЙ АППАРАТ | 2023 |
|
RU2801516C1 |
ПОДОГРЕВАТЕЛЬ ЖИДКИХ И ГАЗООБРАЗНЫХ СРЕД | 2006 |
|
RU2300701C1 |
УСТРОЙСТВО ДЛЯ РЕКТИФИКАЦИИ | 2014 |
|
RU2575036C1 |
Технологическая схема установки дегидрирования парафиновых углеводородов С-С (варианты) | 2017 |
|
RU2643366C1 |
ТРУБЧАТЫЙ РЕАКТОР ДЛЯ ПРОВЕДЕНИЯ ЭКЗОТЕРМИЧЕСКИХ РЕАКЦИЙ И СПОСОБ ПОЛУЧЕНИЯ НИТРАТА АММОНИЯ В НЕМ | 1999 |
|
RU2146653C1 |
Кожухотрубные теплообменники в процессах дегидрирования углеводородов C-C (варианты) | 2017 |
|
RU2642440C1 |
Вертикальный трубчатый теплообменник с псевдоожиженным слоем сферических частиц | 2020 |
|
RU2740376C1 |
ТЕПЛООБМЕННЫЙ АППАРАТ | 2006 |
|
RU2306514C1 |
ТЕПЛООБМЕННИК | 2007 |
|
RU2334187C1 |
Изобретение относится к химической промышленности. Конденсатор серы содержит трубчатый теплообменник (1), расположенный горизонтально, на выходе из которого расположена приемная камера (9), в верхней части которой размещен штуцер выхода газа и сетка (11), подогреваемая посредством змеевика (12), заполненного теплоносителем (13), а в нижней части вертикально под сеткой расположен выходной штуцер (14) серы с кожухом (15), заполненным теплоносителем (13). Межтрубное пространство (5) трубчатого теплообменника (1) заполнено теплоносителем (13), в качестве которого используется водный раствор диэтиленгликоля с рабочей температурой 120°C на входе в межтрубное пространство (5) и 180°C на выходе из межтрубного пространства (5). Выход из межтрубного пространства (5) соединен со входом в змеевик (12) подогрева сетки (11) и со входом (19) в кожух (15) обогреваемого выходного штуцера (14), выходы (20) из змеевика (12) подогрева сетки (11) и из кожуха (15) обогреваемого выходного штуцера (14) соединены с установкой термической подготовки теплоносителя (24), которая соединена с входом в межтрубное пространство (5). Изобретение позволяет обеспечить полное удаление серы из газа. 2 ил.
Конденсатор серы, включающий трубчатый теплообменник, отличающийся тем, что трубчатый теплообменник расположен горизонтально, на выходе из трубного пространства трубчатого теплообменника расположена приемная камера, в верхней части которой размещена сетка, подогреваемая посредством змеевика, заполненного теплоносителем, а в нижней части вертикально под сеткой расположен выходной штуцер с кожухом, заполненным теплоносителем, межтрубное пространство трубчатого теплообменника заполнено теплоносителем, при этом в качестве теплоносителя межтрубное пространство трубчатого теплообменника, змеевик и кожух заполнены водным раствором диэтиленгликоля с рабочей температурой 120°C на входе в межтрубное пространство трубчатого теплообменника и 180°C на выходе из межтрубного пространства трубчатого теплообменника, выход из межтрубного пространства трубчатого теплообменника соединен со входом в змеевик подогрева сетки и со входом в кожух обогреваемого выходного штуцера, выходы из змеевика подогрева сетки и из кожуха обогреваемого выходного штуцера соединены с установкой термической подготовки теплоносителя, а установка подготовки теплоносителя соединена с входом в межтрубное пространство трубчатого теплообменника.
СПОСОБ УДАЛЕНИЯ ЭЛЕМЕНТАРНОЙ СЕРЫ, ПРИСУТСТВУЮЩЕЙ В ГАЗЕ | 1994 |
|
RU2102121C1 |
ТЕПЛООБМЕННИК - УТИЛИЗАТОР ТЕПЛА СЕРЫХ СТОКОВ | 2012 |
|
RU2502022C1 |
УСТРОЙСТВО СОЕДИНЕНИЯ СХОДЯЩИХСЯ ПОД ПРЯМЫМИ УГЛАМИ ДВУТАВРОВЫХ БАЛОК | 1928 |
|
SU10119A1 |
US 4526590 A, 02.07.1985 | |||
US 2876071 A, 03.03.1959 | |||
US 2876070 A, 03.03.1959 | |||
Ю.Н.БРОДСКИЙ и др., Современные методы очистки дымовых газов от сернистого ангидрида и их экономика, Москва, ЦНИИТЭнефтехим, 1973, стр | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Авторы
Даты
2015-12-20—Публикация
2014-08-06—Подача