СПОСОБ НАНЕСЕНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА АЛЮМИНИЙ И ЕГО СПЛАВЫ Российский патент 2016 года по МПК C25D11/06 C25D11/16 

Описание патента на изобретение RU2581956C1

Изобретение относится к области формирования защитных антифрикционных износостойких покрытий на деталях из алюминия и его сплавов или деталях с покрытием из алюминия и его сплавов.

Известен способ нанесения оксидного покрытия, описанного в патенте RU №2055696, 6 B22F 3/14, B22F 3/24, 1996, заключающийся в том, что поверхность изделия подвергают микродуговому оксидированию в течение 3 ч до достижения напряжения 500-800 В и толщины пленки 0,5-1,1 мм. Существенное возрастание величины керамического слоя обусловлено структурой спеченного материала, позволяющей электролиту проникать вглубь изделия при микродуговом оксидировании.

Недостатком известного способа являются невысокие прочностные характеристики основного материала самого изделия, что значительно ограничивает его область применения.

Наиболее близким к предлагаемому является способ нанесения покрытий на металлы и их сплавы, включающий микродуговое оксидирование детали в щелочном силикатсодержащем электролите при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока (RU №2424381, C25D 11/02, C25D 11/24, 2010).

Однако данным способом можно получить твердое покрытие толщиной до 0,1-0,2 мм. Созданный слой на поверхности металла обладает достаточно высокой твердостью, но его толщина во многих случаях не позволяет достичь требуемой долговечности и работоспособности изделия.

Задачей изобретения является разработка нового способа, позволяющего увеличить толщину керамического слоя до 0,5-1,3 мм и повысить его работоспособность.

Технический результат заключается в повышении надежности и долговечности работы детали.

Поставленная задача и указанный технический результата достигаются тем, что в способе нанесения керамического покрытия на алюминии и его сплавах, включающий микродуговое оксидирование детали в электролите, содержащем щелочь 1÷4 г/л, жидкое стекло 3÷12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, согласно изобретению поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3÷0,6 мм, глубиной 0,5÷1,3 мм, на расстоянии 0,3÷0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3÷6 ч.

В результате несквозной перфорации, дополнительно происходит снятие напряжений в слое покрытия, что позволяет повысить работоспособность изделия. При этом несущая способность поверхности не уменьшается, так как углубления, при микродуговой обработке детали, заполняются оксидами кремния и алюминия.

Выбор размеров углублений на поверхности детали и их взаимного расположения был обусловлен следующими факторами. При диаметре углубления менее 0,3 мм доступ электролита к его внутренней поверхности и соответственно отвод газов при микродуговом оксидировании затруднен, что не позволяет существенно увеличить толщину керамического слоя по сравнению с известным способом. Если диаметр их больше 0,6 мм, то осаждаемый из состава электролита слой оксида кремния и оксид алюминия не заполняет полностью все отверстие, что приводит к воздушным разрывам в керамическом слое. Это может привести к снижению несущей поверхности детали и, как следствие, потере работоспособности изделия при его последующей эксплуатации. Нанесение углублений на поверхности изделия глубиной менее 0,5 мм не имеет большого практического смысла, так как не приводит к существенному увеличению толщины керамического слоя. Если же их размер увеличить более 1,3 мм, то высока вероятность образования очагов электрохимической коррозии в толще керамического слоя на поверхности изделия, что снижает адгезию покрытия к основному материалу изделия и его прочность.

Большую роль для формирования упрочненного покрытия играет взаимное расположение углублений на поверхности детали. При нанесении их на расстоянии более 0,6 мм друг от друга при микродуговом оксидировании в полученных выступах останется слой основного материала - алюминия и, следовательно, слой керамического покрытия будет неоднородным. При создании углублений на поверхности на расстоянии менее 0,3 мм от одного до другого при микродуговом оксидировании будет существенно уменьшено содержание модификации оксида алюминия в керамическом слое, обладающей высокой микротвердостью до 24 ГПа, за счет возрастания доли оксида кремния. Это существенно снижает физико-механические характеристики керамического слоя. Так как расстояние между отверстиями существенно влияет на структуру покрытия, то с целью получения его изотропного состава было предложено наносить их в шахматном порядке.

Выбор состава электролита обусловлен следующим. При содержании щелочи менее 1 г/л электролит имеет недостаточную электропроводность, что уменьшает величину и число электрических разрядов внутри слоя покрытия, тем самым снижая его толщину. При содержании щелочи выше 4 г/л в течение короткого времени микродуговой обработки возникают мощные дуговые разряды на поверхности изделия, разрушающие поверхность. При содержании жидкого стекла менее 3 г/л внутри поверхностного слоя детали возникают локальные очаги электрохимической коррозии, что делает невозможным дальнейшую эксплуатацию изделия. При увеличении в составе электролита содержания жидкого стекла более 12 г/л, увеличивается доля оксида кремния в составе покрытия, которая приводит к уменьшению прочности керамического слоя, также увеличивается мощность микродуговых разрядов, которые при определенном значении разрушают покрытие.

Выбор времени микродуговой обработки был сделан исходя из следующего. При времени менее 3 часов толщина покрытия недостаточна для надежной эксплуатации изделия. При обработке свыше 6 часов процесс микродугового оксидирования практически прекращается, не происходит дальнейшего увеличения размера керамического слоя.

Пример 1. В соответствии с предложенным способом, на поверхность образца из дюралюминия Д16 методом электроэрозионной прошивки были нанесены углубления в шахматном порядке диаметром 0,3 мм, глубиной 0,5 мм, на расстоянии 0,3 мм друг от друга. После этого обрабатываемое изделие помещено в электролит следующего состава:

NaOH - 1 г/л;

жидкое стекло - 3 г/л;

вода до 1 л,

при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой 50 Гц. Плотность тока 10 А/дм2. Процесс вели в течение 3 ч.

Одновременно с этим, в соответствии с известным способом, в электролите данного состава подвергали микродуговому оксидированию деталь алюминиевого сплава Д16 с гладкой поверхностью. Плотность тока 10 А/дм2. Процесс вели также в течение 3 ч.

Толщина керамического слоя, созданного по предложенному способу, составляет 0,5 мм; по известному - 0,05 мм.

Пример 2. Пример осуществлялся аналогично приведенному выше примеру, но на поверхности образца формировались углубления диаметром 0,45 мм, глубиной 0,9 мм, на расстоянии 0,45 мм друг от друга. Микродуговое оксидирование проводилось в электролите следующего состава:

NaOH - 2,5 г/л;

жидкое стекло - 9 г/л;

вода до 1 л.

Процесс проводили в течение 4,5 часов. Одновременно в данном электролите получали керамический слой по известному способу.

Результаты: толщина керамического слоя, созданного по предложенному способу - 0,9 мм; по известному - 0,07 мм.

Пример 3. Пример осуществлялся аналогично приведенному выше примеру, но на образец наносились углубления диаметром 0,6 мм, глубиной 1,3 мм, на расстоянии 0,6 мм друг от друга. Микродуговое оксидирование проводилось в электролите следующего состава:

NaOH - 4 г/л;

жидкое стекло - 12 г/л;

вода до 1 л.

Процесс проводили в течение 6 часов. Одновременно в данном электролите получали керамический слой по известному способу.

Результаты: толщина керамического слоя, созданного по предложенному способу - 1,3 мм; по известному - 0,15 мм.

Представленные примеры выполнения заявляемого способа подтверждают, что за счет несквозной перфорации поверхности детали, взаимного расположения углублений на ней, а также выбора состава электролита достигается существенное увеличение толщины керамического слоя, а соответственно, повышается долговечность и работоспособность изделия.

В настоящее время способ находится на стадии лабораторных экспериментов.

Похожие патенты RU2581956C1

название год авторы номер документа
КЕРАМИЧЕСКОЕ ПОКРЫТИЕ, ПОДОШВА УТЮГА И СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИЗДЕЛИЯХ ИЗ АЛЮМИНИЯ ИЛИ ЕГО СПЛАВОВ 2000
  • Мамаев А.И.
  • Бутягин П.И.
  • Рамазанова Ж.М.
  • Мирошников Д.Г.
  • Чеканова Ю.Ю.
RU2213166C2
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНОГО ИЗНОСОСТОЙКОГО АНТИКОРРОЗИОННОГО ПОКРЫТИЯ НА АЛЮМИНИИ И СПЛАВАХ НА ЕГО ОСНОВЕ МЕТОДОМ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ 2014
  • Ракоч Александр Григорьевич
  • Мелконьян Карен Саркисович
  • Монахова Евгения Петровна
  • Гладкова Александра Александровна
  • Пустов Юрий Александрович
RU2570869C1
Устройство для микродугового оксидирования 2014
  • Клименко Борис Михайлович
  • Клименко Татьяна Алексеевна
  • Печейкина Юлия Анатольевна
  • Раков Дмитрий Леонидович
RU2613250C2
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ ВЕНТИЛЬНОГО МЕТАЛЛА ИЛИ ЕГО СПЛАВА 2020
  • Бутягин Павел Игоревич
  • Арбузова Светлана Сергеевна
  • Большанин Антон Владимирович
  • Петухов Дмитрий Владимирович
RU2736943C1
ЭЛЕКТРОЛИТ ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЯ НА ВЕНТИЛЬНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ, СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И ПОКРЫТИЕ, ПОЛУЧЕННОЕ ТАКИМ СПОСОБОМ 2016
  • Бутягин Павел Игоревич
  • Арбузова Светлана Сергеевна
  • Большанин Антон Владимирович
RU2671311C2
Способ нанесения керамического черного покрытия на вентильные металлы методом микродугового оксидирования и покрытие, полученное этим способом 2015
  • Бутягин Павел Игоревич
  • Большанин Антон Владимирович
  • Сафронова Светлана Сергеевна
RU2607875C2
СПОСОБ ФОРМИРОВАНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ НА ИЗДЕЛИИ ИЗ ТИТАНОВОГО СПЛАВА 2015
  • Пичхидзе Сергей Яковлевич
  • Кошуро Владимир Александрович
  • Нечаев Геннадий Георгиевич
RU2607390C2
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗНОШЕННЫХ ДЕТАЛЕЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2009
  • Коломейченко Александр Викторович
  • Титов Николай Владимирович
  • Логачев Владимир Николаевич
  • Гладков Роман Витальевич
RU2389593C1
Способ получения электрохимическим оксидированием покрытий на вентильных металлах или сплавах 2019
  • Никифоров Алексей Александрович
  • Федоров Владимир Ефимович
RU2718820C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА СПЛАВАХ ВЕНТИЛЬНЫХ МЕТАЛЛОВ 2013
  • Малышев Владимир Николаевич
  • Вольхин Александр Михайлович
  • Гантимиров Багаудин Мухтарович
RU2527110C1

Реферат патента 2016 года СПОСОБ НАНЕСЕНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА АЛЮМИНИЙ И ЕГО СПЛАВЫ

Изобретение относится к области формирования защитных антифрикционных износостойких покрытий на деталях из алюминия и его сплавов или на деталях с покрытием из алюминия и его сплавов. Способ включает микродуговое оксидирование детали в электролите, содержащем щелочь 1-4 г/л, жидкое стекло 3-12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, при этом поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3-0,6 мм, глубиной 0,5-1,3 мм, на расстоянии 0,3-0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3-6 ч. Технический результат: повышение надежности и долговечности работы детали. 3 пр.

Формула изобретения RU 2 581 956 C1

Способ нанесения керамического покрытия на деталь из алюминия или его сплава, включающий микродуговое оксидирование детали в электролите, содержащем щелочь 1-4 г/л, жидкое стекло 3-12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, отличающийся тем, что поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3-0,6 мм, глубиной 0,5-1,3 мм, на расстоянии 0,3-0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3-6 ч.

Документы, цитированные в отчете о поиске Патент 2016 года RU2581956C1

СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА АЛЮМИНИИ И ЕГО СПЛАВАХ 2010
  • Болотов Александр Николаевич
  • Новиков Владислав Викторович
  • Новикова Ольга Олеговна
  • Васильев Максим Викторович
  • Горлов Артем Игоревич
RU2424381C1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКИХ ПОВЕРХНОСТЕЙ ТРЕНИЯ НА ДЕТАЛЯХ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 1998
  • Чудинов Б.А.
  • Шатров А.С.
  • Большаков В.А.
  • Полунин В.И.
  • Павлихин С.Е.
  • Иотов В.В.
RU2169801C2
RU 2055696 C1, 10.03.1996
US 6059897 A1, 09.05.2000.

RU 2 581 956 C1

Авторы

Болотов Александр Николаевич

Новиков Владислав Викторович

Новикова Ольга Олеговна

Рачишкин Андрей Александрович

Даты

2016-04-20Публикация

2014-12-30Подача