Изобретение относится к области формирования защитных антифрикционных износостойких покрытий на деталях из алюминия и его сплавов или деталях с покрытием из алюминия и его сплавов.
Известен способ нанесения оксидного покрытия, описанного в патенте RU №2055696, 6 B22F 3/14, B22F 3/24, 1996, заключающийся в том, что поверхность изделия подвергают микродуговому оксидированию в течение 3 ч до достижения напряжения 500-800 В и толщины пленки 0,5-1,1 мм. Существенное возрастание величины керамического слоя обусловлено структурой спеченного материала, позволяющей электролиту проникать вглубь изделия при микродуговом оксидировании.
Недостатком известного способа являются невысокие прочностные характеристики основного материала самого изделия, что значительно ограничивает его область применения.
Наиболее близким к предлагаемому является способ нанесения покрытий на металлы и их сплавы, включающий микродуговое оксидирование детали в щелочном силикатсодержащем электролите при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока (RU №2424381, C25D 11/02, C25D 11/24, 2010).
Однако данным способом можно получить твердое покрытие толщиной до 0,1-0,2 мм. Созданный слой на поверхности металла обладает достаточно высокой твердостью, но его толщина во многих случаях не позволяет достичь требуемой долговечности и работоспособности изделия.
Задачей изобретения является разработка нового способа, позволяющего увеличить толщину керамического слоя до 0,5-1,3 мм и повысить его работоспособность.
Технический результат заключается в повышении надежности и долговечности работы детали.
Поставленная задача и указанный технический результата достигаются тем, что в способе нанесения керамического покрытия на алюминии и его сплавах, включающий микродуговое оксидирование детали в электролите, содержащем щелочь 1÷4 г/л, жидкое стекло 3÷12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, согласно изобретению поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3÷0,6 мм, глубиной 0,5÷1,3 мм, на расстоянии 0,3÷0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3÷6 ч.
В результате несквозной перфорации, дополнительно происходит снятие напряжений в слое покрытия, что позволяет повысить работоспособность изделия. При этом несущая способность поверхности не уменьшается, так как углубления, при микродуговой обработке детали, заполняются оксидами кремния и алюминия.
Выбор размеров углублений на поверхности детали и их взаимного расположения был обусловлен следующими факторами. При диаметре углубления менее 0,3 мм доступ электролита к его внутренней поверхности и соответственно отвод газов при микродуговом оксидировании затруднен, что не позволяет существенно увеличить толщину керамического слоя по сравнению с известным способом. Если диаметр их больше 0,6 мм, то осаждаемый из состава электролита слой оксида кремния и оксид алюминия не заполняет полностью все отверстие, что приводит к воздушным разрывам в керамическом слое. Это может привести к снижению несущей поверхности детали и, как следствие, потере работоспособности изделия при его последующей эксплуатации. Нанесение углублений на поверхности изделия глубиной менее 0,5 мм не имеет большого практического смысла, так как не приводит к существенному увеличению толщины керамического слоя. Если же их размер увеличить более 1,3 мм, то высока вероятность образования очагов электрохимической коррозии в толще керамического слоя на поверхности изделия, что снижает адгезию покрытия к основному материалу изделия и его прочность.
Большую роль для формирования упрочненного покрытия играет взаимное расположение углублений на поверхности детали. При нанесении их на расстоянии более 0,6 мм друг от друга при микродуговом оксидировании в полученных выступах останется слой основного материала - алюминия и, следовательно, слой керамического покрытия будет неоднородным. При создании углублений на поверхности на расстоянии менее 0,3 мм от одного до другого при микродуговом оксидировании будет существенно уменьшено содержание модификации оксида алюминия в керамическом слое, обладающей высокой микротвердостью до 24 ГПа, за счет возрастания доли оксида кремния. Это существенно снижает физико-механические характеристики керамического слоя. Так как расстояние между отверстиями существенно влияет на структуру покрытия, то с целью получения его изотропного состава было предложено наносить их в шахматном порядке.
Выбор состава электролита обусловлен следующим. При содержании щелочи менее 1 г/л электролит имеет недостаточную электропроводность, что уменьшает величину и число электрических разрядов внутри слоя покрытия, тем самым снижая его толщину. При содержании щелочи выше 4 г/л в течение короткого времени микродуговой обработки возникают мощные дуговые разряды на поверхности изделия, разрушающие поверхность. При содержании жидкого стекла менее 3 г/л внутри поверхностного слоя детали возникают локальные очаги электрохимической коррозии, что делает невозможным дальнейшую эксплуатацию изделия. При увеличении в составе электролита содержания жидкого стекла более 12 г/л, увеличивается доля оксида кремния в составе покрытия, которая приводит к уменьшению прочности керамического слоя, также увеличивается мощность микродуговых разрядов, которые при определенном значении разрушают покрытие.
Выбор времени микродуговой обработки был сделан исходя из следующего. При времени менее 3 часов толщина покрытия недостаточна для надежной эксплуатации изделия. При обработке свыше 6 часов процесс микродугового оксидирования практически прекращается, не происходит дальнейшего увеличения размера керамического слоя.
Пример 1. В соответствии с предложенным способом, на поверхность образца из дюралюминия Д16 методом электроэрозионной прошивки были нанесены углубления в шахматном порядке диаметром 0,3 мм, глубиной 0,5 мм, на расстоянии 0,3 мм друг от друга. После этого обрабатываемое изделие помещено в электролит следующего состава:
NaOH - 1 г/л;
жидкое стекло - 3 г/л;
вода до 1 л,
при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой 50 Гц. Плотность тока 10 А/дм2. Процесс вели в течение 3 ч.
Одновременно с этим, в соответствии с известным способом, в электролите данного состава подвергали микродуговому оксидированию деталь алюминиевого сплава Д16 с гладкой поверхностью. Плотность тока 10 А/дм2. Процесс вели также в течение 3 ч.
Толщина керамического слоя, созданного по предложенному способу, составляет 0,5 мм; по известному - 0,05 мм.
Пример 2. Пример осуществлялся аналогично приведенному выше примеру, но на поверхности образца формировались углубления диаметром 0,45 мм, глубиной 0,9 мм, на расстоянии 0,45 мм друг от друга. Микродуговое оксидирование проводилось в электролите следующего состава:
NaOH - 2,5 г/л;
жидкое стекло - 9 г/л;
вода до 1 л.
Процесс проводили в течение 4,5 часов. Одновременно в данном электролите получали керамический слой по известному способу.
Результаты: толщина керамического слоя, созданного по предложенному способу - 0,9 мм; по известному - 0,07 мм.
Пример 3. Пример осуществлялся аналогично приведенному выше примеру, но на образец наносились углубления диаметром 0,6 мм, глубиной 1,3 мм, на расстоянии 0,6 мм друг от друга. Микродуговое оксидирование проводилось в электролите следующего состава:
NaOH - 4 г/л;
жидкое стекло - 12 г/л;
вода до 1 л.
Процесс проводили в течение 6 часов. Одновременно в данном электролите получали керамический слой по известному способу.
Результаты: толщина керамического слоя, созданного по предложенному способу - 1,3 мм; по известному - 0,15 мм.
Представленные примеры выполнения заявляемого способа подтверждают, что за счет несквозной перфорации поверхности детали, взаимного расположения углублений на ней, а также выбора состава электролита достигается существенное увеличение толщины керамического слоя, а соответственно, повышается долговечность и работоспособность изделия.
В настоящее время способ находится на стадии лабораторных экспериментов.
название | год | авторы | номер документа |
---|---|---|---|
КЕРАМИЧЕСКОЕ ПОКРЫТИЕ, ПОДОШВА УТЮГА И СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИЗДЕЛИЯХ ИЗ АЛЮМИНИЯ ИЛИ ЕГО СПЛАВОВ | 2000 |
|
RU2213166C2 |
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНОГО ИЗНОСОСТОЙКОГО АНТИКОРРОЗИОННОГО ПОКРЫТИЯ НА АЛЮМИНИИ И СПЛАВАХ НА ЕГО ОСНОВЕ МЕТОДОМ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ | 2014 |
|
RU2570869C1 |
Устройство для микродугового оксидирования | 2014 |
|
RU2613250C2 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ ВЕНТИЛЬНОГО МЕТАЛЛА ИЛИ ЕГО СПЛАВА | 2020 |
|
RU2736943C1 |
ЭЛЕКТРОЛИТ ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЯ НА ВЕНТИЛЬНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ, СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И ПОКРЫТИЕ, ПОЛУЧЕННОЕ ТАКИМ СПОСОБОМ | 2016 |
|
RU2671311C2 |
Способ нанесения керамического черного покрытия на вентильные металлы методом микродугового оксидирования и покрытие, полученное этим способом | 2015 |
|
RU2607875C2 |
СПОСОБ ФОРМИРОВАНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ НА ИЗДЕЛИИ ИЗ ТИТАНОВОГО СПЛАВА | 2015 |
|
RU2607390C2 |
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗНОШЕННЫХ ДЕТАЛЕЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ | 2009 |
|
RU2389593C1 |
Способ получения электрохимическим оксидированием покрытий на вентильных металлах или сплавах | 2019 |
|
RU2718820C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА СПЛАВАХ ВЕНТИЛЬНЫХ МЕТАЛЛОВ | 2013 |
|
RU2527110C1 |
Изобретение относится к области формирования защитных антифрикционных износостойких покрытий на деталях из алюминия и его сплавов или на деталях с покрытием из алюминия и его сплавов. Способ включает микродуговое оксидирование детали в электролите, содержащем щелочь 1-4 г/л, жидкое стекло 3-12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, при этом поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3-0,6 мм, глубиной 0,5-1,3 мм, на расстоянии 0,3-0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3-6 ч. Технический результат: повышение надежности и долговечности работы детали. 3 пр.
Способ нанесения керамического покрытия на деталь из алюминия или его сплава, включающий микродуговое оксидирование детали в электролите, содержащем щелочь 1-4 г/л, жидкое стекло 3-12 г/л и дистиллированную воду - до 1 л, при последовательном чередовании положительных и отрицательных импульсов напряжения с частотой наложения импульсов 50 Гц переменного тока, отличающийся тем, что поверхность детали подвергают несквозной перфорации путем формирования на ней углублений в шахматном порядке диаметром 0,3-0,6 мм, глубиной 0,5-1,3 мм, на расстоянии 0,3-0,6 мм друг от друга, после чего осуществляют микродуговое оксидирование детали в электролите в течение 3-6 ч.
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА АЛЮМИНИИ И ЕГО СПЛАВАХ | 2010 |
|
RU2424381C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКИХ ПОВЕРХНОСТЕЙ ТРЕНИЯ НА ДЕТАЛЯХ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ | 1998 |
|
RU2169801C2 |
RU 2055696 C1, 10.03.1996 | |||
US 6059897 A1, 09.05.2000. |
Авторы
Даты
2016-04-20—Публикация
2014-12-30—Подача