Предлагаемое техническое решение относится к керамической промышленности, в особенности к способам отбеливания каолина, содержащего примеси железа, придающие ему окраску. Техническое решение может быть использовано в производстве керамических изделий при обогащении каолина.
Природные запасы каолина с низким содержанием красящих оксидов (Fe2O3 и TiO2) ограничены. Присутствие железо- и титансодержащих соединений в каолине, глинах, кварце и других компонентах керамических масс снижает белизну изделий и придает им неблагоприятный оттенок. Железо в каолине и глинах содержится в виде свободных минералов (гетит, гематит, гидрогетит, магнетит, пирит), пленок оксидов железа на поверхности силикатных минералов или входит в кристаллическую структуру силикатов.
В промышленности реализованы различные способы удаления красящих примесей из каолинов: физические, химические, биологические или их комбинации [1-3], оптимальный выбор которых обеспечивает максимальный эффект удаления указанных примесей. К физико-химическим способам относят [1]: пенную флотацию, селективную флокуляцию, магнитную и воздушно-гравитационную сепарацию, но эти способы имеют ряд ограничений: доля сильномагнитных или несвязанных минералов железа с глинистыми минералами может быть незначительна в составе каолина по сравнению с долей слабомагнитных или слабоокристаллизованных аморфных, находящихся внутри объема агрегатов глинистых минералов или в виде пленок на поверхности глинистых минералов.
К известным химическим способам относят кислотное выщелачивание в растворах органических и минеральных кислот без или с использованием восстановителей [3, 4]. Одним из недостатков способов кислотного выщелачивания является негативное воздействие реагентов на окружающую среду. Кроме того, при кислотном выщелачивании необходимо поддерживать pH в диапазоне ниже 5, и, как правило, ниже pH<3, используя минеральные кислоты (серную, соляную и др.). В то же время такое состояние среды суспензии глинистых минералов во время обработки снижает их технологические свойства, ограничивая область применения.
Известны способы использования в качестве химических восстановителей органических или неорганических реактивов: гидросульфит (дитионит) натрия (Na2S2O4), формамидин сульфиновой кислоты (диоксид тиомочевины) (CH4N2O2S), а также другие известные или обнаруженные химические восстановители, способные восстанавливать (гидр)оксиды железа в условиях, предусмотренных способом [5, 6]. Восстановители взаимодействуют с (гидр)оксидами железа, превращая их из нерастворимых в воде в водорастворимые Fe(II)-соединения [7], которые удаляются при последующей фильтрации суспензии глинистых минералов. Механизм, определяющий наиболее быстрое химическое растворение частиц (гидр)оксидов железа - восстановление, но в нейтральной среде химическое растворение частиц (гидр)оксидов железа протекает очень медленно.
Известен способ отбеливания каолина, использующий два восстановителя: гидросульфит или бисульфит и второй восстановитель, предпочтительно содержащий элементы III группы, например, борогидрид натрия. К недостатку указанного способа является то, что предпочтительный диапазон pH среды должен быть около 2,8-3,2.
Биовыщелачивание является альтернативой кислотному выщелачиванию, так как микроорганизмы для их жизнедеятельности могут использовать конкретные примеси железа как акцептор электронов при нейтральных условиях среды [2]. Вполне возможно использовать определенные штаммы микроорганизмов, обладающие железовосстанавливающим биовыщелачиванием, но это, к сожалению, усложняет технологический процесс обезжелезнения в связи с необходимостью поддержания чистоты культур введенных микроорганизмов. Поскольку железовосстанавливающие микроорганизмы широко распространены в окружающей среде, то наиболее практичным вариантом было бы использовать естественные микроорганизмы, предварительно выделенные из природных источников, которые уже адаптированы к местным условиям. Для обеспечения развития естественных видов микроорганизмов, участвующих в восстановлении железа, не требуется стерилизация исходного сырья, поскольку стерилизация - процесс дорогостоящий и в условиях производства трудноосуществимый.
Наиболее близким к предлагаемому техническому решению является способ отбеливания глиносодержащего керамического сырья, включающий его подготовку в виде суспензии, введение в суспензию питательной среды, активирующей естественную микрофлору, выдержку суспензии во времени при комнатной температуре в течение 5-35 суток, последующую магнитную сепарацию и химическую обработку полученного остатка путем промывания раствором щавелевокислого аммония [9].
Недостатком указанного способа является низкая скорость роста анаэробных бактерий и соответственно медленное накопление продуктов их жизнедеятельности: несбраживающих доноров электронов и Fe(II)-соединений, способных к редукции Fe(III) и растворению соединений железа.
Задача предлагаемого технического решения заключается в повышении эффективности отбеливания каолина за счет интенсификации редукции Fe(III) с образованием новых Fe(II)-соединений и их эффективным удалением при последующей обработке каолина.
Техническим результатом решения указанной задачи является разработка способа отбеливания каолина с достижением снижения желтизны и повышения белизны каолина за счет наиболее полного удаления из его состава (гидр)оксидов железа.
Указанная задача решается при использовании способа отбеливания каолина путем его обезжелезнения, предусматривающего приготовление суспензии каолина, введение в нее питательной среды, активирующей естественную микрофлору и выдержку суспензии во времени при постоянном температурном режиме, последующую магнитную сепарацию и химическую обработку полученного остатка путем промывания раствором щавелевокислого аммония. Согласно предлагаемому техническому решению, в процессе выдержки суспензии во времени интенсифицируют биоредукцию Fe(III) путем введения совместно с питательной средой инокулята, представляющего собой адаптированный к природе каолина активный ценоз аэробных и анаэробных бактерий с продуктами их жизнедеятельности и Fe(II)-соединениями. Указанный инокулят предварительно получают в отдельно взятом объеме той же приготовленной суспензии каолина. Объемное соотношение вводимого инокулята и суспензии каолина составляет 1:4÷8 соответственно при количественном содержании питательной среды 1,0÷2,5 мас. % относительно массы сухого каолина. Температурный режим, при котором осуществляют выдержку суспензии с введенными продуктами, во времени поддерживают в диапазоне 20÷30°C до установления значений редокс-потенциала среды ре от -0,5 до -2,0 при pH 7,0±1,0. По окончании выдержки суспензии каолина химическую обработку полученного остатка осуществляют при промывном режиме перед проведением магнитной сепарации.
Другое отличие способа заключается в получении инокулята, которое производят в отдельно взятом объеме той же приготовленной суспензии каолина посредством добавления 3÷5 мас. % указанной питательной среды относительно массы сухого каолина, содержащегося в этом объеме. Суспензию с питательной средой выдерживают во времени при температуре 35÷45°C до установления редокс-потенциала среды ре от -1,0 до -4,0 при pH 7,0±1,0.
Отличие способа состоит также в применении в качестве питательной среды, активирующей естественную микрофлору, мелассы (индекс M) в смеси с соединениями азота, фосфора и калия (индекс H), взятыми в массовом соотношении компонентов M:H, равном 4:1.
Еще одно отличие способа заключается в том, что перед введением питательной среды и инокулята приготовленную суспензию каолина предварительно подвергают магнитной сепарации для удаления крупных частиц примеси минералов железа.
В природном каолине присутствуют аэробные и анаэробные бактерии, включая железоредуцирующие, хотя и в неактивном состоянии. Условия, создаваемые на стадии подготовки инокулята, благоприятствуют их росту и размножению до эффективной популяции, адаптированной к условиям редукции Fe(III) в составе суспензии каолина.
По сравнению с прототипом, предлагаемый способ позволяет за счет введения питательной среды не только активировать естественное сообщество аэробных и анаэробных бактерий, но и посредством совместного введения инокулята, содержащего устойчивый ценоз аэробных и анаэробных бактерий, продукты их жизнедеятельности и вновь образованные Fe(II)-соединения, ускорить процесс редукции Fe(III), способствуя эффективному обезжелезнению каолина.
Процесс биоредукции Fe(III) проводят при нейтральных значениях pH 7,0±1 и окислительно-восстановительном состоянии среды суспензии каолина по значениям редокс-потенциала не ниже критического ре<2,0, необходимого для биоредукции Fe(III), предпочтительно ре=-1,0, за счет активирования процесса введением инокулята, содержащего устойчивый ценоз аэробных и анаэробных бактерий, включая железовосстанавливающие бактерии, продукты их жизнедеятельности и вновь образованные Fe(II)- и Fe(II)-Fe(III)-соединения.
Увеличение периода поддержания значений редокс-потенциала до ре<-2,0, соответствующих сильновосстановительной среде суспензии каолина, при отсутствии в водной среде суспензии в условиях застойного режима достаточного количества электронных челноков и хелатов для Fe(III), приведет к перенасыщению Fe(II) водной среды, их сорбции на поверхности клеток бактерий железоредукторов и гидроксидов железа, блокируя их дальнейшую редукцию.
Проведение двух операций магнитной сепарации суспензии каолина, до введения питательной среды и инокулята и после выдерживания суспензии во времени при указанных условиях и промывания каолина раствором щавелевокислого аммония, также способствует повышению эффективности способа. Это связано с тем, что в природном каолине, как правило, присутствует железо, различающееся по структурной организации: магниторазбавленное в составе силикатов и органических соединений, в виде аморфных и слабо-упорядоченных соединений, а также в виде средне- и крупных частиц минералов железа. В условиях застойного режима влажности суспензии каолина биологическая редукция Fe(III) относительно селективна и затрагивает магниторазбавленные, аморфные и слабоупорядоченные соединения железа, оставляя средние и крупные частицы в сохранности. Поэтому магнитоупорядоченные соединения железа необходимо предварительно удалить из состава каолина посредством магнитной сепарации или иным способом.
Инокулят, вносимый в суспензию каолина, содержит органические метаболиты, один из которых поверхностно-активные вещества, способные дезагрегировать частицы каолина с выделением частиц (гидр)оксидов железа.
В результате введения питательной среды совместно с инокулятом в состав суспензии каолина в период выдерживания при температуре 20-30°C проявляется тенденция снижения редокс-потенциала до критического ре<2,0, необходимого в осуществлении редукции Fe(III), сопровождаемой изменением окраски суспензии каолина от желто-красного до зеленовато-синего тона.
Кроме того, понижение редокс-потенциала ре, например, до значений ре<-2,0, ускоряет редукцию Fe(III)→Fe(II), с одной стороны, но, с другой стороны, благодаря застойному режиму влажности в период выдержки суспензии каолина, за счет сорбции Fe(II) поверхностью Fe(III)-(гидр)оксидов образуются новые Fe(II)-Fe(III)-минералы, типа грин раста, придающие суспензии каолина зеленовато-синюю окраску, имеющие большую удельную поверхность и, следовательно, большую реактивность.
В период подготовки инокулята в водной среде суспензии каолина происходит следующее:
- изменяются значения pH (от 7,0-8,0 до 4,0 и обратно) и окислительно-восстановительное состояние среды: от окислительной (ре>7,0) и умеренно-восстановительной (ре=2,0÷7,0) до восстановленной (ре=-2,0÷+2,0) и сильно-восстановленной (ре<-2,0);
- активизируется естественное сообщество аэробных и анаэробных бактерий в сторону увеличения строго анаэробных бактерий, включая железовосстанавливающие, которые используют Fe(III), как акцептор электронов;
- накапливаются продукты жизнедеятельности естественного сообщества аэробных и анаэробных бактерий, включая биологические поверхностно-активные вещества, железорастворяющие органические кислоты и органические соединения, которые могут выступать в качестве электронного «челнока» и выполнять роль посредников при редукции Fe(III);
- осуществляется редукция Fe(III), растворение Fe(II)-соединений, накопление Fe(II) и синтез новых Fe(II)-Fe(III)-соединений в составе среды инокулята.
Предлагаемый способ осуществляют следующим образом.
Для отбеливания каолина путем его обезжелезнения отбирают каолин сухого способа обогащения с содержанием каолинита 92-95 мас. % и оксидов железа Fe2O3 1,21-1,38 мас. %.
Содержание общего железа в образцах определяют рентгеноспектральным флуоресцентным методом на рентгеновском спектрометре многоканального типа СМР-25 и выражают в пересчете на Fe2O3.
Из указанного выше природного каолина традиционным способом готовят водную суспензию влажностью 60%.
Затем отбирают часть объема приготовленной 60%-ной водной суспензии в отдельную емкость, в которой готовят инокулят с добавлением раствора питательной среды, активирующей естественную микрофлору каолина. В качестве питательной среды используют мелассу (индекс M), соединения азота, фосфора и калия (индекс H), взятые в массовом соотношении компонентов M:H, равном 4:1. Источниками азота, фосфора и калия (индекс H) являются NH4H2PO4, K2HPO4, NaNO3.
Каолин, используемый для подготовки инокулята, не должен подвергаться предварительной обработке, включая термическую, отбор его производят из увлажненных участков месторождения с содержанием Fe2O3 не ниже 1%, используемой при биообработке суспензии каолина в качестве акцептора электронов. Количественное содержание введенной питательной среды составляет 3÷5 мас. % относительно массы сухого каолина, содержащегося во взятом объеме 60%-ной суспензии каолина. Суспензию с добавкой питательной среды выдерживают при температуре 35-45°C до установления редокс-потенциала ре от -1,0 до -4,0 при pH 7,0±1,0. Эти условия дают возможность накапливать максимальное количество анаэробных бактерий, включая железовосстанавливающие, а также продукты их жизнедеятельности и Fe(II)-соединения в составе получаемого инокулята.
При необходимости, основной объем приготовленной 60%-ной водной суспензии каолина предварительно подвергают магнитной сепарации для удаления крупных частиц примеси минералов железа. Последующую биообработку суспензии ведут с интенсификацией процесса биоредукции Fe(III) посредством введения совместно с питательной средой инокулята, отбираемого в виде определенного объема суспензии каолина, где был получен инокулят, представляющий собой адаптированный к природе каолина активный ценоз аэробных и анаэробных бактерий с продуктами их жизнедеятельности и Fe(II)-соединениями. В качестве питательной среды, активирующей естественную микрофлору, также используют мелассу (индекс M), соединения азота, фосфора и калия (индекс H), взятые в массовом соотношении компонентов M:H, равном 4:1. Источниками азота, фосфора и калия (индекс H) являются: NH4H2PO4, K2HPO4, NaNO3.
Объемное соотношение вводимого инокулята и 60%-ной водной суспензии каолина составляет 1:4÷8 соответственно при содержании питательной среды в количестве 1,0÷2,5 мас. % относительно массы сухого каолина. Суспензию каолина с введенными продуктами выдерживают во времени при температурном режиме 20÷30°C с поддержанием его до установления значений редокс-потенциала среды ре от -0,5 до -2,0 при pH 7,0±1,0. Указанные условия интенсификации биоредукции Fe(III) создают максимально возможную скорость протекания процессов, ведущих к обезжелезнению каолина. По окончании выдержки суспензия каолина приобретает зеленовато-синий тон.
После этого из суспензии каолина удаляют жидкую фазу, остаток химически обрабатывают при промывном режиме с использованием 0,1 М раствора щавелекислого аммония из расчета Т:Ж = 1:1. После химической обработки каолин подвергают магнитной сепарации с последующими обезвоживанием и сушкой.
Значения концентрации водородных ионов pH и окислительно-восстановительные условия среды Eh суспензии каолина измеряют при естественной влажности во внутренних горизонтах объема используемой емкости на pH-метре pH - 150 М с помощью набора электродов. Расчетную величину редокс-потенциала ре, показывающую активность электронов, определяют по уравнению:
ре=Eh:58, где
Eh - окислительно-восстановительные условия среды, выраженные в мВ.
Для определения цветности каолина после его биообработки измеряют его спектры отражения на спектроколориметре «Пульсар». Колориметрические характеристики определяют в координатах МКО X, Y, Z и МКО L*a*b*, две оси которого характеризуют цветность: ось a* - красный (+a*) и зеленый (-a*); ось b* - желтый (+b*) и синий (-b*); третья ось, перпендикулярная плоскости цветности (a*-b*), определяет светлоту L* (от 0 до 100).
Степень желтизны G (ASTM E 313) оценивают, исходя из формулы:
G=((1,28X-1,06Z)/Y)100, %,
где X, Y, Z - координаты цвета МКО 1931 г.
Расчет индекса белизны (ГОСТ Р ИСО 105-J02); (ASTM E 313) проводят по формуле:
WISO=Y+800(x0-x)+1700(y0-y),
где Y - координаты цвета образца;
x, y - координаты цветности образца;
x0, y0 - координаты цвета для эталона при источнике света/наблюдателе C/2°
Осуществление предлагаемого способа детально изложено в следующих примерах.
Пример 1.
Для реализации способа отбеливания каолина используют две емкости: первая - для подготовки инокулята; вторая - для создания и поддержания условий, необходимых для биоредукции Fe(III) в период выдержки суспензии каолина во времени.
Используемый при отбеливании каолин (№1 - исходный образец) получен технологией сухого обогащения с массой частиц размером ниже 2 мкм, составляющих 39% от общей массы каолина. Содержание в нем оксидов железа в пересчете на Fe2O3 соответствует величине 1,21 мас. %, представляемой преимущественно гидроксидами железа.
Приготовление 60%-ной водной суспензии каолина проводят по технологии, принятой в керамической промышленности [1].
Для приготовления инокулята в первую емкость заливают 60%-ную водную суспензию каолина, в которую вводят 5 мас. % питательной среды относительно массы сухого каолина в первой емкости. Питательная среда, активирующая естественную микрофлору каолина, включает мелассу, отход переработки сахарной свеклы (индекс M), и неорганическую добавку (индекс H), содержащую источники азота, фосфора и калия при соотношении компонентов (M:H) 4:1, а именно (г/100 г сухого каолина): меласса - 4,0 г; NH4H2PO4 - 0,4 г; K2HPO4 - 0,4 г; NaNO3 - 0,2 г.
Естественное сообщество бактериальных культур в суспензии каолина активируют, обеспечивая его размножение, поддерживая температуру 45°C во времени. Для определения периода времени, соответствующего условиям подготовки инокулята, измеряют значения редокс-потенциала ре и pH. Процесс подготовки инокулята считают завершенным при смене значений окислительно-восстановительного состояния среды от окислительных до сильновосстановительных, что соответствует значениям редокс-потенциала ре -4,0 при pH 6,5 и появлению сине-зеленых пятен по объему суспензии каолина. Изменение редокс-потенциала среды и окраски суспензии свидетельствует о последовательной смене популяций сообщества бактериальных культур и активации железовосстанавливающих бактерий, основным акцептором которых являются Fe(III)-соединения.
После образования инокулята основной процесс, обеспечивающий обезжелезнение каолина, производят во второй емкости, содержащей основной объем той же самой 60%-ной водной суспензии каолина. Для этого интенсифицируют биоредукцию Fe(III) посредством введения совместно с питательной средой инокулята, отбираемого из первой емкости в виде суспензии каолина, содержащей адаптированный к природе каолина активный ценоз аэробных и анаэробных бактерий с продуктами их жизнедеятельности и Fe(II)-соединениями. Одновременно с этим в суспензию, содержащуюся во второй емкости, добавляют ту же самую питательную среду, активирующую естественную микрофлору каолина. Соотношение объемов инокулята и 60%-ной водной суспензии каолина составляет 1:8 при содержании питательной среды 2,5% от массы сухого каолина во второй емкости. Затем выдерживают суспензию каолина во времени с введенными продуктами при температуре 30°C до достижения значений редокс-потенциала ре -1,5 при pH 7,8 (№3 - опытный образец). В этих условиях происходит последовательный рост популяций сообщества бактериальных культур, которые проявляют активность в отношении процесса биоредукции Fe(III). В результате активности бактериальных культур, наличию органических лиганд L в составе метаболитов и Fe(II)-соединений происходит ускорение процесса биоредукции Fe(III) в суспензии каолина. Повышение концентрации Fe(II) и сорбция Fe(II) и анионов поверхностью гидрооксидов железа способствуют синтезу Fe(II)-Fe(III)-соединений типа грин раста. При синтезе грин раста изменяется окраска суспензии каолина до зеленовато-синего тона.
Для получения сравнительных данных отбеливания каолина предложенным способом используют дополнительную контрольную емкость с тем же объемом суспензии каолина одинакового природного состава и с влажностью 60%. В суспензию вводят указанную выше питательную среду в том же количественном соотношении, что и во второй емкости. Выдержку суспензии после введения питательной среды производят при температуре 30°C (№2 - контрольный образец). Редокс-потенциал, установившийся в контрольной емкости суспензии каолина за тот же промежуток времени выдержки суспензии, что и во второй емкости, достигает значения ре=1,6 при pH 6,5 без изменения окраски в объеме суспензии контрольной емкости.
По окончании выдержки во времени суспензии каолина, содержащиеся во второй и контрольной емкостях, обезвоживают, промывают раствором 0,1 М щавелевокислого аммония двукратно, подвергают магнитной сепарации, затем обезвоживают и сушат.
Результаты испытания образцов каолина после его отбеливания выражают в виде значений индекса белизны WISO, степени желтизны G, координат цвета L*a*b* и содержания оксида железа Fe2O3 для опытных образцов (№3 - опытный образец), контрольного образца (№2 - контрольный образец) и исходного образца (№1 - исходный образец), полученный по технологии сухого обогащения.
В приведенной ниже таблице представлены показатели желтизны и белизны опытных и контрольных образцов каолина, полученные по результатам его отбеливания биоредукцией Fe(III)-соединений для примера 1.
Пример 2.
Способ отбеливания каолина осуществляют аналогично описанному в примере 1 с использованием одинаковых исходных продуктов. Отличие состоит в том, что при получении инокулята в первой емкости количество вводимой в водную 60%-ную суспензию каолина питательной среды составляет 3 мас. % относительно массы сухого каолина, при этом выдержку суспензии во времени производят при температуре 30°C до установления редокс-потенциала среды ре=-3,0 при pH 6,8.
Интенсификацию биоредукции Fe(III)-соединений 60%-ной водной суспензии каолина, содержащейся во второй емкости, достигают за счет введения инокулята, взятого из первой емкости в количестве, при котором его объемное соотношение и суспензии каолина во второй емкости составляет 1:6 соответственно. При этом одновременно вводят во вторую емкость питательную среду, указанную выше, в количестве 1,5 мас. % от массы сухого каолина, содержащегося во второй емкости. Выдержку во времени суспензии каолина во второй емкости после введения указанных продуктов ведут при температуре 25°C до достижения значения редокс-потенциала ре=-0,5 при pH 7,2.
Суспензию каолина, содержащуюся в контрольной емкости, обрабатывают по такой же технологической схеме, но без добавления инокулята с достижением за тот же период времени ее выдержки, что и во второй емкости, значения редокс-потенциала ре=1,3 при pH 6,9.
Суспензии каолина из второй и контрольной емкостей обезвоживают, каолин промывают трехкратно раствором 0,1 М щавелевокислого аммония, подвергают двукратной магнитной сепарации, затем обезвоживают и сушат.
Результаты испытания образцов каолина, полученные после его отбеливания по примеру 2, приведены в таблице.
Пример 3.
Берут первую емкость с суспензией каолина и обрабатывают ее для получения инокулята, аналогичного тому, как описано в примере 1, при этом в суспензию каолина вводят те же компоненты питательной среды, что и в примере 1, в количестве 4,0 мас. % относительно массы сухого каолина, содержащегося в этой емкости. Последующую выдержку суспензии во времени ведут при температуре 35°C до достижения значения редокс-потенциала среды ре=-1,3 при pH 7,2.
Интенсификацию биоредукции Fe(III)-соединений 60%-ной водной суспензии каолина, содержащейся во второй емкости, также ведут посредством совместного введения инокулята, отбираемого из первой емкости, и той же питательной среды, что и в примерах 1, 2. Объемное соотношение инокулята, отбираемого из первой емкости, и суспензии каолина, содержащейся во второй емкости, составляет 1:4 соответственно, при содержании питательной среды во второй емкости в количестве 1,0 мас. % от массы сухого каолина. Выдержку суспензии каолина с добавленными продуктами во времени ведут при температуре 20°C до достижения значения редокс-потенциала ре=-2,0 при pH 7,5. Последующую обработку суспензии осуществляют аналогично описанной в примерах 1 и 2.
60%-ную водную суспензию каолина, содержащуюся в контрольной емкости, обрабатывают по той же технологической схеме, что и в примерах 1, 2 без добавления инокулята. Выдержку суспензии каолина с питательной средой во времени ведут по достижении за тот же период времени выдержки, что и в емкости 2, значения редокс-потенциала ре=0,6 при pH 6,8.
Суспензии каолина из второй и контрольной емкостей обезвоживают, каолин однократно промывают раствором 0,1 М щавелевокислого аммония, подвергают магнитной сепарации, затем обезвоживают и сушат.
Результаты обработки каолина для опытного и контрольного образцов по примеру 3 представлены в таблице.
Пример 4.
Берут каолин сухого обогащения, который содержит Fe2O3 в количестве, равном 1,38 мас. %, примеси железа в виде гематита и гетита (№1 - исходный образец). Готовят 60%-ную водную суспензию каолина и обрабатывают ее, как описано в примере 1 (№3 - опытный образец), за исключением того, что предварительно готовую суспензию каолина, содержащуюся во второй емкости, предварительно подвергают магнитной сепарации с отделением магнитной фракции. Дальнейшую обработку суспензии каолина в контрольной емкости ведут аналогично описанной в примере 1 (№2 - контрольный образец).
В представленной ниже таблице приведены сравнительные данные результатов испытаний образцов каолина после его отбеливания путем интенсификации биоредукции Fe(III) в сравнении с контрольными и исходными образцами, в частности, указаны значения содержания оксидов железа Fe2O3, индекса белизны WISO, степени желтизны G и координат цвета в системе CIE L*a*b*.
В результате проведенной биообработки каолина индекс белизны WISO опытных образцов каолина повышается до значений 58,4-71,6, тогда как в контрольных образцах после их обработки посредством активирования естественной микрофлоры введением питательной среды индекс белизны WISO на уровне 42,2-54,9 против индекса белизны WISO исходного каолина на уровне 10,7-34,5. Согласно ASTM E313, белым считают материал, имеющий значение индекса белизны WISO выше 40,0, а ниже 40,0 - не белым.
Аналогично повышению значений индекса белизны WISO понижается степень желтизны G (ASTM E313) опытных образцов каолина (6,8-11,0%) против контрольных (12,6-16,5%) и исходных (18,4-27,3%).
Содержание железа в перерасчете на содержание Fe2O3 в исходных и контрольных образцах составляет 1,21-1,38 мас. % и 0,56-0,88 мас. %, соответственно, против содержания железа в опытных образцах на уровне 0,43-0,75 мас. %.
Литература
1. Августиник А.И. Керамика. - П.: Стройиздат.- 1975. - 592 с.
2. Eisele T.C., Gabby K.L. Review of Reductive Leaching of iron by Anaerobic Bacteria // Mineral Processing and Extractive Metallurgy Review: An International Journal. 2014. V. 35. N 2. P. 75-105.
3. Патент РФ №2042654. Способ очистки от железа и его соединений каолина или кварцевого песка МПК C04B 33/04, 1995.
4. Авторское свидетельство СССР №358269. Способ отбеливания каолина. МПК C04B 33/04, C01F 7/46. 1972.
5. Авторское свидетельство СССР №937490. Способ отбеливания каолина. МПК C09C 1/42; D21D 3/00, 1982.
6. Patent US 7122080 B2. Integrated process for simultaneous beneficiation, leaching, and dewatering of kaolin clay suspension. МПК C04B 14/04. 2006.
7. Patent GB N 1043252 (A). Clay bleaching. МПК C04B 33/10, C04B 33/06, C04B 33/30, 1966.
8. Patent EP N 1146089 (A1). Method for bleaching kaolin clay and other minerals and bleaching products obtained by the method. МПК C09C 1/42; D21H 17/68; D21H 19/40. 2001.
9. Патент RU №2083527. Способ отбеливания глиносодержащего керамического сырья. МПК C04B 33/04, 1997.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОТБЕЛИВАНИЯ ГЛИНОСОДЕРЖАЩЕГО КЕРАМИЧЕСКОГО СЫРЬЯ | 1995 |
|
RU2083527C1 |
АНАЭРОБНОЕ УДАЛЕНИЕ СОЕДИНЕНИЙ СЕРЫ ИЗ СТОЧНЫХ ВОД | 1995 |
|
RU2144510C1 |
ИЗВЛЕЧЕНИЕ МОЛИБДЕНА ИЗ СОДЕРЖАЩИХ МОЛИБДЕН СУЛЬФИДНЫХ МАТЕРИАЛОВ С ПОМОЩЬЮ БИОЛОГИЧЕСКОГО ВЫЩЕЛАЧИВАНИЯ В ПРИСУТСТВИИ ЖЕЛЕЗА | 2007 |
|
RU2439178C9 |
СПОСОБ ОЧИСТКИ КВАРЦЕВЫХ ПЕСКОВ ОТ ЖЕЛЕЗА | 2015 |
|
RU2603934C1 |
Способ получения наночастиц ферригидрита | 2021 |
|
RU2767952C1 |
ПОВЕРХНОСТНО-ОБРАБОТАННАЯ МОДИФИЦИРОВАННАЯ ЦЕЛЛЮЛОЗА ИЗ ХИМИЧЕСКОГО СУЛЬФАТНОГО ВОЛОКНА И СПОСОБЫ ЕЕ ИЗГОТОВЛЕНИЯ И ИСПОЛЬЗОВАНИЯ | 2014 |
|
RU2671504C2 |
МОДИФИЦИРОВАННАЯ ЦЕЛЛЮЛОЗА ИЗ ХИМИЧЕСКОГО СУЛЬФАТНОГО ВОЛОКНА И СПОСОБЫ ЕЕ ИЗГОТОВЛЕНИЯ И ИСПОЛЬЗОВАНИЯ | 2014 |
|
RU2662553C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ БАКТЕРИЙ К ДЕЗИНФЕКТАНТАМ | 2009 |
|
RU2409679C1 |
ДИГИДРОКСИБЕНЗОЛ-ГУМИНОВОЕ ПРОИЗВОДНОЕ И СКЕЙВЕНДЖЕР ЖЕЛЕЗА ДЛЯ ОЧИСТКИ ВОД НА ЕГО ОСНОВЕ | 2015 |
|
RU2593610C1 |
СПОСОБ ПОЛУЧЕНИЯ МИЛЛЕРИТА С ИСПОЛЬЗОВАНИЕМ СУЛЬФАТРЕДУЦИРУЮЩИХ БАКТЕРИЙ | 2012 |
|
RU2528777C2 |
Изобретение относится к керамической промышленности, в особенности к способам отбеливания каолина, содержащего примеси железа, придающие ему окраску, применяемого в производстве керамических изделий. Технический результат изобретения - повышение белизны и снижение желтизны каолина за счет интенсификации редукции Fe(III) с образованием новых Fe(II)-соединений и наиболее полного их удаления при последующей обработке каолина. Указанный результат достигается отбеливанием глиносодержащего керамического сырья путем его обезжелезнения, предусматривающего приготовление суспензии каолина, введение в нее питательной среды, активирующей естественную микрофлору и выдержку суспензии во времени при постоянном температурном режиме, последующую магнитную сепарацию и химическую обработку полученного остатка промыванием раствором щавелевокислого аммония. Согласно предлагаемому техническому решению, интенсифицируют биоредукцию Fe(III) путем введения совместно с питательной средой инокулята в виде адаптированного к природе каолина активного ценоза аэробных и анаэробных бактерий с продуктами их жизнедеятельности и Fe(II)-соединениями, предварительно полученного в отдельно взятом объеме суспензии каолина. Объемное соотношение вводимого инокулята и суспензии каолина составляет 1:4÷8 соответственно при содержании питательной среды в количестве 1,0÷2,5 мас. % относительно массы сухого каолина, температурный режим выдержки суспензии во времени составляет 20÷30°C с поддержанием его до установления значений редокс-потенциала ре от -0,5 до -2,0 при pH 7,0±1,0, а последующую химическую обработку суспензии проводят при промывном режиме перед проведением магнитной сепарации. 3 з.п. ф-лы, 1 табл.
1. Способ отбеливания каолина путем его обезжелезнения, включающий приготовление суспензии каолина, введение в нее питательной среды, активирующей естественную микрофлору, выдержку суспензии во времени при постоянном температурном режиме, последующую магнитную сепарацию и химическую обработку каолина промыванием раствором щавелевокислого аммония, отличающийся тем, что при выдержке каолиновой суспензии во времени интенсифицируют биоредукцию Fe(III) посредством введения совместно с питательной средой инокулята в виде адаптированного к природе каолина активного ценоза аэробных и анаэробных бактерий с продуктами их жизнедеятельности и Fe(II)-соединениями, предварительно полученного в отдельно взятом объеме той же суспензии каолина, при этом объемное соотношение вводимого инокулята и суспензии каолина составляет 1:4÷8 соответственно при содержании питательной среды в количестве 1,0÷2,5 мас.% относительно массы сухого каолина, температурный режим выдержки суспензии каолина во времени составляет 20÷30°C с поддержанием его до установления значений редокс-потенциала ре от -0,5 до -2,0 при pH 7,0±1,0, а химическую обработку полученного каолина осуществляют при промывном режиме перед проведением магнитной сепарации.
2. Способ по п. 1, отличающийся тем, что для получения указанного инокулята в отдельно взятый объем той же приготовленной суспензии каолина вводят 3÷5 мас.% питательной среды относительно массы сухого каолина с последующей выдержкой суспензии во времени при температуре 35÷45°C до установления значений редокс-потенциала ре от -1,0 до -4,0 при pH 7,0±1,0.
3. Способ по п. 1 или п. 2, отличающийся тем, что в качестве питательной среды используют мелассу (индекс M), соединения азота, фосфора и калия (индекс H), взятые в массовом соотношении компонентов M:H, равном 4:1.
4. Способ по п. 1, отличающийся тем, что перед введением питательной среды и инокулята суспензию каолина предварительно подвергают магнитной сепарации для удаления крупных частиц примеси минералов железа.
СПОСОБ ОТБЕЛИВАНИЯ ГЛИНОСОДЕРЖАЩЕГО КЕРАМИЧЕСКОГО СЫРЬЯ | 1995 |
|
RU2083527C1 |
СПОСОБ ПОДГОТОВКИ ДАЦИТОВОГО ПОРФИРА ДЛЯ ИЗГОТОВЛЕНИЯ ФАРФОРОФАЯНСОВЫХ ИЗДЕЛИЙ | 1994 |
|
RU2079466C1 |
Вертикальный ветряный двигатель | 1924 |
|
SU2477A1 |
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
US 5266539 A, 30.11.1993. |
Авторы
Даты
2016-04-20—Публикация
2014-12-29—Подача