СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА NiFeGaCo Российский патент 2016 года по МПК C22F1/10 C22C19/03 B82Y30/00 

Описание патента на изобретение RU2583560C1

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co, с целью значительного повышения их механических и функциональных свойств, создания на их основе материалов с многократным эффектом памяти формы. Способ может быть использован в машиностроении, авиационной, космической промышленности, медицине, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.

Известен способ термической обработки ферромагнитных сплавов Ni49Fe18Ga27Со6 (ат.%) (Е.Ю. Панченко, Ю.И. Чумляков, Е.Е. Тимофеева, Н.Г. Ветошкина, H.Maier. Циклическая стабильность сверхэластичности в состаренных [ 1 ¯ 23 ]-монокристаллах Ni49Fe18Ga27Со6 //Известия вузов. Физика. - 2012.- Т.55- №9.- С. 61-65), который заключается в проведении двухступенчатого отжига: 1 - отжиг при 1373 К, 25 мин с последующей закалкой, 2 - старение при 673 К, 4 ч в свободном состоянии с последующим медленным охлаждением. Это приводит к формированию в аустенитной фазе бимодальной гетерофазной структуры: после высокотемпературного отжига выделяются частицы γ-фазы длиной 5÷10 мкм, которые позволяют пластифицировать материал, после низкотемпературного отжига - наноразмерные частицы размером γ'-фазы 5÷30 нм. Частицы γ'-фазы не испытывают мартенситных превращений, наследуются мартенситом и деформируются упруго при развитии мартенситных превращений в матрице, накапливая значительную упругую энергию. Накопленная при прямом мартенситном превращении обратимая энергия способствует развитию обратного превращения при снятии нагрузки и [ 1 ¯ 23 ]-монокристаллы Ni49Fe18Ga27Со6 в данном структурном состоянии проявляют высокую циклическую стабильность сверхэластичности, что является существенным моментом для практического использования. При увеличении времени старения происходит изменение характера развития мартенситных превращений под нагрузкой, частицы γ'-фазы увеличиваются до 150-300 нм и приводят к образованию «неориентированного» мартенсита вблизи поверхности раздела «частица-матрица», отличного от основного. В результате происходит релаксация упругой энергии при развитии мартенситных превращений: вблизи частиц образуются дефекты упаковки и дислокации и наблюдается низкая циклическая стабильность.

Однако старение при 673 К, 4 ч в не приводит к проявлению многократного эффекта памяти формы, поскольку в сплаве NiFeGaCo, подвергнутом отжигу в свободном состоянии, формируются несколько вариантов частиц γ'-фазы, и локальные поля напряжений от частиц в данном случае не приводят к возникновению дальнодействующих полей, способствующих самопроизвольной деформации сплавов при охлаждении.

Известен способ обработки сплавов Cu68.73Zn14.55Al16.72 (ат. %) для получения многократного эффекта памяти формы, который включает в себя ступенчатую термообработку (выдержка при 1120 К, 15 мин, охлаждение до 770 К и последующая закалка в воду при Т=273 К) и последующее термомеханическое циклирование через интервал мартенситных превращений под нагрузкой (постоянные напряжения 34 МПа, количество циклов 30). В ходе отжига при 770 К в материале формируются мелкие частицы γ-фазы порядка 10 нм. Поскольку и в данном случае отжиг проводился в свободном состоянии, то сразу после термообработки многократный эффект памяти формы не наблюдается. Последующие 30 циклов термомеханического циклирования приводят к появлению многократного эффекта памяти формы величиной до 5%. Однако данный метод обладает недостатками. В ходе многочисленных тренировок в материале генерируется и копится большое количество дефектов, которые, с одной стороны, могут способствовать проявлению многократного эффекта памяти формы, но с другой стороны, существенно понижают циклическую стабильность свойств материала и способствуют быстрой деградации (Amengual A., Cesari E., Pons J. Characteristics of the two-way memory effect induced by thermomechanical cycling in Cu-Zn-Al single crystals //Journal de Physique IV. V. 5. C8-871-876).

В качестве наиболее близкого аналога-прототипа выбран способ получения нанокомпозитов с двойным эффектом памяти формы на основе монокристаллов CoNiAl, что достигается посредством термомеханической обработки: отжиг 1613 К в течение 8,5 ч, закалка и последующее старение в вакууме при 673 К, 0,5 ч под действием сжимающей нагрузки 100-120 МПа вдоль [011] направления. Последнее приводит к ориентированному росту неравноосных дисперсных частиц ε-Co размером 10-20 нм и созданию дальнодействующих внутренних полей напряжений, способствующих появлению многократного эффекта памяти формы (патент РФ 2495947, опубл. 20.10.2013, МПК C22F1/10).

Способ-прототип, включающий старение под нагрузкой, имеет недостатки в отношении ферромагнитных сплавов на основе NiFeGaCo. Во-первых, кристаллические структуры фаз в сплавах NiFeGaCo и CoNiAl различны. После обработки при 673 К 0,5 ч в сплавах CoNiAl выделяются частицы размером до 20 нм трех типов: ε-Co с ГПУ решеткой, α-Co с ГЦК решеткой и со сверхструктурой типа Ni2Al (общая объемная доля частиц f ~ 20 %). В сплавах на основе NiFeGaCo при старении 673 К выделяется только γ′-фаза, объемная доля их меньше и частицы имеют другую форму. Для выделения достаточной объемной доли γ′-фазы и созданию дальнодействующих полей напряжений необходим другой режим старения/большее количество времени. Во-вторых, поскольку частицы в NiFeGaCo вытянуты вдоль<111>направлений, то термообработка под нагрузкой вдоль [011] направления не приведет к образованию одного варианта частиц, поскольку существуют 2 направления<111>, эквивалентные по отношению к [011]. Поэтому необходима другая ориентация приложения нагрузки в процессе старения для ориентированного роста частиц. В-третьих, для получения максимальной обратимой деформации при многократном эффекте памяти формы необходим выбор определенной кристаллографической ориентации после проведения двухступенчатой термообработки.

Задачей настоящего изобретения является разработка способа получения многократного эффекта памяти формы в монокристаллах сплавов на основе Ni49Fe18Ga27Co6, с целью проявления многократного эффекта памяти формы при охлаждении в свободном состоянии с величиной, обратимой деформации до 4,5%.

Поставленная задача достигается посредством термомеханической обработки монокристаллов сплавов Ni49Fe18Ga27Co6, включающей первичный нагрев до 1373 К, выдержку в течение 25 мин, закалку и вторичную термомеханическую обработку - старение при 673 К под действием сжимающей нагрузки 100 МПа, которую в отличие от прототипа проводят в течение 4 ч вдоль [ 3 ¯ 12 ] направления для ориентированного роста неравноосных дисперсных частиц.

Необходимо подчеркнуть, что в способе-прототипе, после термомеханической обработки образцы вырезались вдоль той же ориентации, вдоль которой проводилось старение - [011]. Первая основная отличительная особенность предложенного способа - это выбор другой ориентации после проведения термомеханической обработки - [001]. При сжатии вдоль этого направления в монокристаллах NiFeGaCo реализуется максимальный ресурс деформации решетки при L21-14М мартенситном превращении - 6,2%.

Второй особенностью является проведение термомеханического циклирования, которое заключается в циклическом изменении температуры в интервале развития мартенситных превращений (от 220 К до 420 К) под действием постоянной сжимающей нагрузки, приложенной вдоль направления [001]. Рекомендуется проводить термомеханическое циклирование при напряжениях от 30 до 80 МПа в течение одного-двух циклов во избежание появления большого количества дефектов.

Пример конкретного выполнения.

Исходным материалом является монокристалл Ni49Fe18Ga27Co6 (ат. %), из которого методом электроискровой резки вырезаны образцы в форме параллелепипеда с ориентацией одного из ребер вдоль [ 3 ¯ 12 ] направления. Образцы отжигали в среде He при 1373 К в течение 25 мин и закаливали в воде комнатной температуры. На следующем этапе проводили термомеханическую обработку по описанному выше способу - старение в вакууме при 673 К, 4 ч под нагрузкой 100 МПа, приложенной вдоль [ 3 ¯ 12 ] направления, медленное охлаждение и старение в свободном состоянии при 673 К, 4 ч.

После термообработки образцы вырезали вдоль двух направлений - [ 3 ¯ 12 ] и [001].

После старения в свободном состоянии многократный эффект памяти формы не возникает независимо от ориентации образцов. Однако проведение термомеханического циклирования в интервале мартенситных превращений (охлаждение до 220 К и нагрев до 420 К) под нагрузкой 40-80 МПа, приложенной вдоль [001] направления, приводит к возникновению многократного эффекта памяти формы величиной до 1,4% (при максимальной обратимой деформации 4,3%). Это значит, что образец при последующем охлаждении под действием минимальных сжимающих напряжений 0,7 МПа, которые позволяют фиксировать изменение размеров образца, испытывает деформацию за счет внутренних дальнодействующих полей напряжений. Деформация является обратимой при нагреве.

После старения под нагрузкой образцы без предварительных тренировок обладают многократным эффектом памяти формы с величиной деформации 1±(0,3)% вдоль [ 3 ¯ 12 ] направления и ~0,5±(0,3)% вдоль [001] направления.

Для увеличения обратимой деформации проведено термомеханическое циклирование в интервале мартенситных превращений (от 220 К до 420 К) под нагрузкой. Величина обратимой деформации изменяется в зависимости от величины приложенных напряжений во время проведения термомеханического циклирования и увеличивается от 3% при циклировании при 30 МПа до 4,5 % при циклировании при 80 МПа. Максимальная величина обратимой деформации при реализации обычного эффекта памяти формы в данном состоянии при 30-80 МПа составляет 5%. Следовательно, предложенный способ позволяет достичь эффективности многократного эффекта памяти формы 90% за счет проведения двухступенчатой термической обработки, включающей старение под нагрузкой вдоль [ 3 ¯ 12 ] направления, и термомеханического циклирования под нагрузкой вдоль [001] направления.

В таблице приведены значения обратимой деформации при обычном эффекте памяти формы (εЭПФ) и многократном эффекте памяти формы (εМЭПФ) для [001]- и [ 3 ¯ 12 ]-монокристаллов, прошедших термомеханическую обработку и тренировку.

Таким образом, предложенный способ обработки монокристаллов сплавов на основе NiFeGaCo позволяет получить многократный эффект памяти формы и использовать монокристаллы в качестве инновационных технических решений, например, датчиков, актюаторов, исполнительных механизмов в различных современных технических конструкциях и устройствах.

Похожие патенты RU2583560C1

название год авторы номер документа
Способ обработки монокристаллов ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат.% и Al 29-30 ат.% 2017
  • Чумляков Юрий Иванович
  • Панченко Елена Юрьевна
  • Ефтифеева Анна Сергеевна
RU2641598C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ СПЛАВА Fe-Ni-Co-Al-Ti-Nb, ОРИЕНТИРОВАННЫХ ВДОЛЬ НАПРАВЛЕНИЯ [001], С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2019
  • Чумляков Юрий Иванович
  • Киреева Ирина Васильевна
  • Победенная Зинаида Владимировна
  • Куксгаузен Ирина Владимировна
  • Куксгаузен Дмитрий Александрович
  • Поклонов Вячеслав Вадимович
RU2699470C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Ti С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И СВЕРХЭЛАСТИЧНОСТЬЮ, ОРИЕНТИРОВАННЫХ ВДОЛЬ [001] НАПРАВЛЕНИЯ ПРИ ДЕФОРМАЦИИ РАСТЯЖЕНИЕМ 2013
  • Чумляков Юрий Иванович
  • Киреева Ирина Васильевна
RU2524888C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Nb С ТЕРМОУПРУГИМИ γ-α' МАРТЕНСИТНЫМИ ПРЕВРАЩЕНИЯМИ 2012
  • Чумляков Юрий Иванович
  • Киреева Ирина Васильевна
RU2495946C1
Способ термомеханической обработки сплавов на основе никелида титана для реализации эффекта памяти формы 2019
  • Грязнов Александр Сергеевич
  • Плотников Владимир Александрович
RU2724747C1
СПОСОБ ОБРАБОТКИ СПЛАВОВ ТИТАН-НИКЕЛЬ С СОДЕРЖАНИЕМ НИКЕЛЯ 49-51 АТ.% С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И ОБРАТИМЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ (ВАРИАНТЫ) 2011
  • Прокошкин Сергей Дмитриевич
  • Рыклина Елена Прокопьевна
  • Хмелевская Ирина Юрьевна
RU2476619C2
Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы 2015
  • Рыклина Елена Прокопьевна
  • Прокошкин Сергей Дмитриевич
  • Вачиян Кристина Александровна
  • Крейцберг Алена Юрьевна
RU2608246C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СПЛАВА НА ОСНОВЕ МОНОАЛЮМИНИДА НИКЕЛЯ С ВЫСОКОТЕМПЕРАТУРНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2005
  • Косицын Сергей Владимирович
  • Косицына Ирина Игоревна
  • Валиуллин Андрей Илдарович
  • Катаева Наталья Вадимовна
RU2296178C1
Способ получения упрочненных заготовок крепежных изделий из нержавеющей аустенитной стали 2020
  • Панов Дмитрий Олегович
  • Наумов Станислав Валентинович
  • Перцев Алексей Сергеевич
  • Кудрявцев Егор Алексеевич
  • Симонов Юрий Николаевич
  • Салищев Геннадий Алексеевич
RU2749815C1
Сплав на основе железа с эффектом памяти формы 1989
  • Кокорин Владимир Владимирович
  • Гунько Лариса Петровна
SU1617035A1

Иллюстрации к изобретению RU 2 583 560 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА NiFeGaCo

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6 включает отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме. Отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ 3 ¯ 12 ], в течение 4 часов. После старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001]. Повышаются механические и функциональные свойства материала. 1 табл., 1 пр.

Формула изобретения RU 2 583 560 C1

Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6, ат.%, включающий отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме, отличающийся тем, что отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ 3 ¯ 12 ], в течение 4 часов, а после старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале развития мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001].

Документы, цитированные в отчете о поиске Патент 2016 года RU2583560C1

ПАНЧЕНКО Е.Ю
и др., Циклическая стабильность сверхэластичности в состаренных [123]-монокристаллах NiFeGaCo
Известия Высших Учебных Заведений
Физика
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Ti С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И СВЕРХЭЛАСТИЧНОСТЬЮ, ОРИЕНТИРОВАННЫХ ВДОЛЬ [001] НАПРАВЛЕНИЯ ПРИ ДЕФОРМАЦИИ РАСТЯЖЕНИЕМ 2013
  • Чумляков Юрий Иванович
  • Киреева Ирина Васильевна
RU2524888C1
СПОСОБ УПРАВЛЕНИЯ ФОРМОЙ ИСПОЛНИТЕЛЬНОГО ЭЛЕМЕНТА 2001
  • Васильев А.Н.
  • Глебов А.В.
  • Дикштейн И.Е.
  • Коледов В.В.
  • Косолапов Д.В.
  • Красноперов Е.П.
  • Тошиюки Такаги
  • Тулайкова А.А.
  • Черечукин А.А.
  • Шавров В.Г.
RU2221076C2
CN 101705391 A, 12.05.2010
MORITO H
et al, Stress-assisted

RU 2 583 560 C1

Авторы

Чумляков Юрий Иванович

Панченко Елена Юрьевна

Тимофеева Екатерина Евгеньевна

Ветошкина Наталья Геннадьевна

Даты

2016-05-10Публикация

2015-02-25Подача