СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДА РОТОРА САМОТОРМОЗЯЩЕГОСЯ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ Российский патент 2016 года по МПК H02K15/02 H02K7/10 

Описание патента на изобретение RU2585016C1

Изобретение относится к технологии изготовления электрических машин и может быть использовано в электротехнической промышленности при изготовлении роторов самотормозящихся асинхронных электродвигателей.

Известен способ изготовления ротора самотормозящегося асинхронного электродвигателя, включающий операции вырубки пластин различных диаметров и набора пакета пластин конической формы (Ряшенцев Н.П., Швец С.А. Самотормозящийся асинхронный двигатель с конусным ротором. - Новосибирск: «Наука», 1974. - 70 с.). Однако для изготовления ротора известным способом необходимо сложное оборудование и при компоновке электродвигателя требуется статор с внутренним коническим отверстием.

Наиболее близким по технической сущности и достигаемому результату к заявленному изобретению является способ изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя, по которому ферромагнитный порошок смешивают с жидким связующим веществом, помещают смесь в пресс-форму, создают магнитное поле и в процессе затвердевания смеси ее спрессовывают по направлению, перпендикулярному к линиям поля, а опрессовку производят во вращающемся магнитном поле с переменной интенсивностью в осевом направлении, равномерно увеличивающейся от одного торца магнитопровода к другому (АС №640399, 1978 г.).

Данный способ изготовления позволяет получить осевую анизотропию магнитных свойств ротора, необходимую для создания осевого электромагнитного усилия в самотормозящемся асинхронном электродвигателе.

Недостатком данного способа является отсутствие возможности варьировать в широких пределах анизотропию магнитных свойств ротора, от которой зависит величина осевого электромагнитного усилия, что сужает область применения самотормозящихся асинхронных электродвигателей для разных приводных систем.

Кроме этого, при данном способе изготовления для создания осевой анизотропии необходимо дополнительное нестандартное оборудование, а именно устройство, создающее вращающееся магнитное поле с переменной интенсивностью в осевом направлении, равномерно увеличивающейся от одного торца магнитопровода к другому, что ведет к необходимости его изготовления (на каждую мощность электродвигателя требуется разный типоразмер изготавливаемого индуктора), к усложнению технологии изготовления и увеличению себестоимости. Дополнительное усложнение технологии и увеличение себестоимости связано с тем, что необходимо иметь источник переменного тока для подключения индуктора и дополнительно расходовать электроэнергию для создания вращающегося магнитного поля индуктора.

Задачей является разработка способа изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя, позволяющего получить необходимую величину осевого электромагнитного усилия при упрощении технологии и уменьшении себестоимости.

Технический результат заключается в возможности изменения и получения требуемой степени осевой анизотропии.

Технический результат достигается тем, что в способе изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя, при котором ферромагнитный порошок смешивают с жидким связующим веществом, полученную смесь помещают в пресс-форму и спрессовывают в осевом направлении, при этом во внутрь пресс-формы засыпают слой гомогенной массы, имеющей уменьшенную магнитную проницаемость и состоящей из жидкого связующего вещества с ферромагнитным порошком, после сверху на него симметрично относительно продольной оси помещают вставку из электротехнической стали, изготовленную в форме полого тонкостенного усеченного конуса, диаметр основания которого равен внутреннему диаметру пресс-формы, с последующей засыпкой внутрь конуса этой же гомогенной массы, а в полость между пресс-формой и вставкой, а также поверх верхнего края вставки засыпают гомогенную массу из жидкого связующего вещества с ферромагнитным порошком, имеющую увеличенную магнитную проницаемость, при этом слой под вставкой и слой над вставкой равны по высоте, а после прессования в осевом направлении длина готового магнитопровода ротора соответствует высоте вставки.

В данном способе изготовления возможность получения требуемой осевой анизотропии ротора реализуется за счет разделения и формирования необходимого монотонного изменения магнитного сопротивлении ротора в осевом направлении двух гомогенных смесей с разными магнитными свойствами (связующего вещества с ферромагнитным порошком с уменьшенными магнитными свойствами µ1 и связующего вещества с ферромагнитным порошком с увеличенными магнитными свойствами µ2) при помощи вставки из тонкостенной электротехнической стали в форме полого тонкостенного усеченного конуса, имеющей малое магнитное сопротивление. Монотонное изменение в осевом направлении магнитного сопротивления ротора происходит за счет того, что магнитный поток при работе электродвигателя пересекает области с разными магнитными сопротивлениями, которые монотонно изменяются с разной скоростью в осевом направлении согласно зависимости:

Rµi=Rµ1i+Rµвi+Rµ2i,

где Rμ1i - магнитное сопротивление на i-м участке магнитопровода ротора, состоящего из связующего вещества и магнитного материала с уменьшенной магнитной проницаемостью µ1; Rµвi - магнитное сопротивление материала вставки в форе пустотелого конуса на i-м участке (практически оно будет равно нулю, так как магнитная проницаемость материала, из которого изготовлена вставка, намного больше, чем магнитная проницаемость в областях с материалами µ1 и µ2); Rµ2i - магнитное сопротивление на i-м участке магнитопровода ротора, состоящего из связующего вещества и магнитного материала с увеличенной магнитной проницаемостью µ2.

При этом осевая анизотропия ротора пропорциональна углу α (углу, образованному между внутренней стенкой пресс-формы и стенкой вставки усеченного тонкостенного конуса) и зависит как от геометрического размера верхнего диаметра вставки Dв (так как диаметр основания Dо остается величиной постоянной и равен внутреннему диаметру пресс-формы) (фиг. 1), так и подбора магнитных свойств (µ1 и µ2) ферромагнитных порошков для приготовления гомогенных смесей. При расположении гомогенной массы с уменьшенной магнитной проницаемостью µ1 во внутренней полости вставки из тонкостенной электротехнической стали в форме полого тонкостенного усеченного конуса, а гомогенной массы с увеличенной магнитной проницаемостью µ1 в полости между стенками пресс-формы и вставкой из тонкостенной электротехнической стали в форме полого тонкостенного усеченного конуса энергетические характеристики электродвигателя будут наилучшие, так как падение магнитного напряжения в роторе будет минимально (из-за минимального магнитного сопротивления).

Данный способ изготовления роторов позволяет расширить область применения самотормозящихся асинхронных двигателей для разных приводных систем за счет возможности формирования требуемой степени осевой магнитной анизотропии ротора, а значит получения необходимой величины осевого электромагнитного усилия.

Упрощение технологии изготовления происходит за счет упрощения формирования осевой анизотропии ротора, а именно за счет отказа от использования нестандартного устройства для каждого типоразмера ротора, требующего источник питания, создающего вращающееся магнитное поле с переменной интенсивностью в осевом направлении. В качестве альтернативы предлагается использование ферромагнитных порошков с различными магнитными свойствами (µ1 и µ2) для создания смесей и их последующей компоновки и формирования вдоль длины магнитопровода ротора за счет наличия вставки из электротехнической стали в форме пустотелого усеченного конуса.

Уменьшение себестоимости изготовления осуществляется за счет того, что при изготовлении отпадает необходимость использования разных индукторов (на каждую мощность электродвигателя со своим типоразмером), а также дополнительных расходов электроэнергии для создания вращающегося магнитного поля индуктора. При этом материал применяемой вставки в форме тонкостенного усеченного конуса из электротехнической стали широко распространен, а сама вставка проста в изготовлении и имеет низкую себестоимость.

Сущность устройства поясняется чертежом.

На фиг. 1 показано взаимное расположение вставки из электротехнической стали в форме полого тонкостенного усеченного конуса и гомогенных смесей с разными магнитными свойствами в роторе самотормозящегося асинхронного электродвигателя до прессования в разрезе.

Способ изготовления осуществляется в следующей последовательности.

Ферромагнитный порошок, имеющий уменьшенную магнитную проницаемость µ1, смешивают с жидким связующим веществом (например, эпоксидной смолой) в соотношении. Полученную гомогенную массу засыпают равномерным слоем Δ1 во внутреннюю полость пресс-формы 1. Сверху на слой Δ1 симметрично относительно продольной оси помещают вставку 2 из электротехнической стали, изготовленную в форме полого тонкостенного усеченного конуса, чей диаметр основания Dо равен внутреннему диаметру пресс-формы 1. Затем во внутреннюю полость 3 вставки 2 из электротехнической стали, изготовленной в форме полого тонкостенного усеченного конуса, до ее верхнего края засыпают вышеуказанную гомогенную массу с уменьшенной магнитной проницаемостью µ1.

После этого ферромагнитный порошок, имеющий увеличенную магнитную проницаемость µ2, смешивают с жидким связующим веществом (например, эпоксидной смолой). Полученную гомогенную массу засыпают в полость 4 между пресс-формой 1 и вставкой 2 из электротехнической стали, изготовленной в форме полого тонкостенного усеченного конуса, до верхнего края вставки 2. Затем эту же гомогенную массу засыпают равномерным слоем Δ2 во внутреннюю полость 5 пресс-формы 1. При этом высота засыпаемого слоя под вставкой Δ1 равна высоте слоя над вставкой Δ2. После этого производят двухстороннее прессование ротора в осевом направлении. Величину засыпаемого слоя Δ1 и Δ2 выбирают с учетом того, чтобы после прессования длина готового магнитопровода ротора равнялась высоте вставки 2 усеченного конуса l.

Похожие патенты RU2585016C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ РОТОРА САМОТОРМОЗЯЩЕГОСЯ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ 2015
  • Попов Сергей Анатольевич
  • Спичак Вера Сергеевна
  • Ладенко Николай Васильевич
  • Пономарев Петр Юрьевич
  • Нечесов Владимир Евгеньевич
  • Ладенко Александр Васильевич
RU2589728C1
Устройство для изготовления ротора самотормозящегося асинхронного электродвигателя 2016
  • Спичак Дарья Сергеевна
  • Попов Сергей Анатольевич
  • Спичак Вера Сергеевна
  • Елфимов Михаил Александрович
  • Ивашкин Илья Ильич
  • Симоненко Алла Сергеевна
  • Умрихин Дмитрий Олегович
RU2631546C1
Устройство для изготовления ротора самотормозящегося асинхронного электродвигателя 2021
  • Попов Сергей Анатольевич
  • Асташов Максим Александрович
RU2771938C1
Способ изготовления магнитопроводов аксиальных электрических машин 2016
  • Пономарев Петр Юрьевич
  • Попов Сергей Анатольевич
  • Ладенко Александра Александровна
  • Ладенко Николай Васильевич
  • Нечесов Владимир Евгеньевич
  • Елфимов Михаил Александрович
  • Ивашкин Илья Ильич
  • Воронцов Владимир Валериевич
  • Новиков Артем Вячеславович
  • Михед Александра Игоревна
RU2650104C2
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДОВ АКСИАЛЬНЫХ ЭЛЕКТРИЧЕСКИХ МАШИН 2014
  • Попов Сергей Анатольевич
  • Ладенко Николай Васильевич
  • Пономарев Петр Юрьевич
  • Нечесов Владимир Евгеньевич
  • Попов Максим Сергеевич
  • Спичак Вера Сергеевна
  • Энговатов Александр Васильевич
RU2567868C1
САМОТОРМОЗЯЩИЙСЯ АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ СО СДВОЕННЫМ КОРОТКОЗАМКНУТЫМ РОТОРОМ 2015
  • Попов Сергей Анатольевич
  • Ладенко Николай Васильевич
  • Спичак Вера Сергеевна
  • Попов Максим Сергеевич
RU2602242C1
САМОТОРМОЗЯЩИЙСЯ АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ СО СДВОЕННЫМ МАССИВНЫМ РОТОРОМ 2014
  • Попов Сергей Анатольевич
  • Ладенко Николай Васильевич
  • Романенко Кристина Юрьевна
  • Спичак Вера Сергеевна
  • Шишканова Лилия Михайловна
RU2551893C1
Самотормозящийся асинхронный электродвигатель со сдвоенным короткозамкнутым ротором для привода поточных линий 2017
  • Попов Сергей Анатольевич
  • Плахотнюк Александр Николаевич
  • Умрихин Дмитрий Олегович
  • Ладенко Александра Александровна
  • Спичак Вера Сергеевна
RU2655654C1
Способ изготовления статора электрической машины с аксиальным магнитным потоком 2023
  • Исмагилов Флюр Рашитович
  • Вавилов Вячеслав Евгеньевич
  • Жеребцов Алексей Анатольевич
  • Юшкова Оксана Алексеевна
  • Саяхов Ильдус Финатович
  • Зиннатуллина Гузель Салаватовна
RU2809983C1
Самотормозящийся асинхронный электродвигатель со сдвоенным короткозамкнутым ротором для привода поточных линий 2017
  • Попов Сергей Анатольевич
  • Спичак Вера Сергеевна
  • Умрихин Дмитрий Олегович
RU2661641C1

Иллюстрации к изобретению RU 2 585 016 C1

Реферат патента 2016 года СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДА РОТОРА САМОТОРМОЗЯЩЕГОСЯ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Изобретение относится к технологии изготовления электрических машин и может быть использовано в электротехнической промышленности при изготовлении роторов самотормозящихся асинхронных электродвигателей. Технический результат заключается в возможности изменения и получения требуемой степени осевой анизотропии. При изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя ферромагнитный порошок смешивают с жидким связующим веществом, полученную смесь помещают в пресс-форму и спрессовывают в осевом направлении. Внутрь пресс-формы засыпают слой гомогенной массы, имеющей уменьшенную магнитную проницаемость и состоящей из жидкого связующего вещества с ферромагнитным порошком. После сверху на него симметрично относительно продольной оси помещают вставку из электротехнической стали, изготовленную в форме полого тонкостенного усеченного конуса, диаметр основания которого равен внутреннему диаметру пресс-формы, с последующей засыпкой внутрь конуса этой же гомогенной массы. В полость между пресс-формой и вставкой, а также поверх верхнего края вставки засыпают гомогенную массу из жидкого связующего вещества с ферромагнитным порошком, имеющую увеличенную магнитную проницаемость. 1 ил.

Формула изобретения RU 2 585 016 C1

Способ изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя, при котором ферромагнитный порошок смешивают с жидким связующим веществом, полученную смесь помещают в пресс-форму и спрессовывают в осевом направлении, отличающийся тем, что внутрь пресс-формы засыпают слой гомогенной массы, имеющей уменьшенную магнитную проницаемость и состоящей из жидкого связующего вещества с ферромагнитным порошком, после сверху на него симметрично относительно продольной оси помещают вставку из электротехнической стали, изготовленную в форме полого тонкостенного усеченного конуса, диаметр основания которого равен внутреннему диаметру пресс-формы, с последующей засыпкой внутрь конуса этой же гомогенной массы, а в полость между пресс-формой и вставкой, а также поверх верхнего края вставки засыпают гомогенную массу из жидкого связующего вещества с ферромагнитным порошком, имеющую увеличенную магнитную проницаемость, при этом слой под вставкой и слой над вставкой равны по высоте, а после прессования в осевом направлении длина готового магнитопровода ротора соответствует высоте вставки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585016C1

Способ изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя 1977
  • Гайтов Багаудин Хамидович
SU640399A1
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ МАШИН И АППАРАТОВ 1990
  • Беляев Е.Ф.
  • Вакутин А.П.
  • Цылев П.Н.
  • Шулаков Н.В.
  • Юрин А.С.
  • Патласов В.Г.
RU2051456C1
Самотормозящийся асинхронный электродвигатель 1977
  • Гайтов Багаудин Хамидович
SU729757A1
JP 1175212 A, 11.07.1989.

RU 2 585 016 C1

Авторы

Попов Сергей Анатольевич

Пономарев Петр Юрьевич

Спичак Вера Сергеевна

Нечесов Владимир Евгеньевич

Попов Максим Сергеевич

Даты

2016-05-27Публикация

2015-03-23Подача