СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР Российский патент 2016 года по МПК H01M4/48 H01M4/583 H01M10/38 B82Y30/00 

Описание патента на изобретение RU2585176C1

Область техники

Изобретение относится к способу изготовления катодного материала, катодному материалу и к литий-ионному аккумулятору.

Уровень техники

Из уровня техники известен электродный материал для положительных электродов Li-батарей формулы MxV2O5, где М=Н+, Li+, х=0.05±0.05 для H+ и 0.8±0.01 для Li+ (RU 2009/138900 А, опубл. 27.04.2011). Недостатком известного решения является низкая удельная емкость аккумулятора.

Наиболее близким аналогом заявленной группы изобретений является катодный материал для литий-ионного аккумулятора, раскрытый в US 2012/0321953, опубл. 20.12.2012. В наиболее близком аналоге, в качестве катодного материала для литий-ионного аккумулятора используют композитный материал на основе наночастиц оксида ванадия и графена. Метод изготовления композита представляет собой формирование суспензии наночастиц оксида ванадия и графена в летучем органическом растворителе и последующее выпаривание растворителя с образованием композитного материала. Недостатком данного решения является то, что данный метод изготовления композита не может обеспечить эффективный контакт между слоями графена и частицами оксида ванадия, в связи с чем удельная емкость аккумулятора оказывается ниже ожидаемой (до 400 мАч/г), а потеря емкости составляет до 90% за 100 циклов перезарядки. Кроме того, в композите, изготовленном данным методом, в ходе цитирования наблюдается потеря контакта между частицами оксида ванадия и графеном, что приводит к существенному снижению емкости аккумулятора при перезаряде.

Раскрытие изобретения

Задача предлагаемого технического решения состоит в разработке катодного материала для вторичных аккумуляторов, позволяющего повысить удельную емкость при перезаряде аккумулятора.

Техническим результатом заявленной группы изобретения является увеличение удельной емкости и количества циклов перезарядки аккумулятора.

Указанный технический результат достигается за счет того, что способ изготовления композитного катодного материала включает следующие стадии:

- получение гидрогеля или ксерогеля V2O5;

- выдержка в герметичном тефлоновом автоклаве при температуре 130-200°С и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5 и углеродный материал с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена;

- центрифугирование полученного композиционного материала;

- промывка композиционного материала;

- сушка композиционного материала при температуре 50°С.

Смесь содержит компоненты, при следующем соотношении, мас. %:

гидрогель или ксерогель V2O5 - 60-95;

углеродный материал - 5-40.

Гидрогель или ксерогель получают в результате гидролиза органических производных ванадиевой кислоты или поликонденсацией ванадатов в водном растворе в кислой среде, или путем разложения пероксованадиевых соединений, образованных при растворении кристаллического V2O5 в растворе пероксида водорода.

Углеродный материал предварительно обработан раствором пероксида водорода в кислой среде.

В качестве углеродного материала применен материал, выбранный из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь.

Заявленный технический результат достигается за счет того, что композитный материал содержит ядро из наностержней V2O5 и оболочку из графена.

Кроме того, технический результат достигается за счет того, что литиевый аккумулятор, содержащий анод из металлического Li, электролит и катод в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,1-1 г/мл, содержащей композитный катодный материал, растворенный в ацетоне.

Токосъемник выполнен в виде фольги или сетки.

Покрытие токосъемника выполнено с возможностью дополнительного содержания в суспензии гидрофобной полимерной связки в количестве 0-20 мас. %.

В качестве гидрофобной полимерной связки применены поливинилидендифторид или тетрафторэтилен.

В качестве электролита применена соль, растворенная в растворителе и выбранная из группы: перхлорат лития, гексафторфосфат лития, тетрафторборат лития.

Растворитель выбран из группы: пропиленкарбонат, этиленкарбонат, бутиленкарбонат, диметилкарбонат, этилметилкарбонат, диэтилкарбонат, 1,2-диметоксиэтан, 1,3-диоксолан, тетрагидрофуран, диметиловый эфир диэтиленгликоля, диметиловый эфир триэтиленгликоля, дибутиловый эфир диэтиленгликоля, диметилсульфоксид, гексафторфосфат 1-этил-3-метилимидазолия, тетрафторборат 1-этил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-этил-3-метилимидазолия, гексафторфосфат 1-бутил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-бутил-3-метилимидазолия, гексафторфосфат 1-метил-1-пропил пиперидиния, бис-трифторметилсульфонилимид 1-метил-1-пропилпиперидиния или их различные смеси.

Краткое описание чертежей

Фиг. 1 - Гальваностатическая разрядно-зарядная кривая литиевого аккумулятора с катодным материалом, раскрытого в наиболее близком аналоге.

Фиг. 2 - Гальваностатическая разрядно-зарядная кривая литиевого аккумулятора с катодным материалом, содержащего наностержни V2O5 в оболочке из графена.

Фиг. 3 - Гальваностатическая кривая литиевого аккумулятора с катодным материалом, содержащего наностержни V2O5 в оболочке из графена при его разряде при токе 0,1С за 30 циклов перезаряда. Черная кривая относится к 1-му циклу перезарядки; серая - к 30-му.

Фиг. 4 - Гальваностатическая кривая литиевого аккумулятора с катодным материалом, содержащего наностержни V2O5 в оболочке из графена при его заряде при токе 0,1С за 30 циклов перезаряда. Черная кривая относится к 1-му циклу перезарядки; серая - к 30-му.

Осуществление изобретения

Способ изготовления композитного катодного материала включает следующие стадии:

- получение гидрогеля или ксерогеля V2O5;

- выдержка в герметичном тефлоновом автоклаве при температуре 130-200°С и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5, и углеродного материала с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена;

- центрифугирование полученного композиционного материала;

- промывка композиционного материала;

- сушка композиционного материала при температуре 50°С.

Смесь содержит компоненты, при следующем соотношении, мас. %:

гидрогель или ксерогель V2O5 - 60-95;

углеродный материал - 5-40.

При содержании в смеси углеродного материала менее 5 мас. % приводит к недостаточной электронной проводимости катодного материала, следовательно к снижению характеристик аккумулятора. При содержании в смеси углеродного материала более 40 мас. % приводит к снижению удельной емкости катодного материала из-за большого количества неактивного углеродного материала в нем.

Гидрогель или ксерогель получают в результате гидролиза органических производных ванадиевой кислоты или пол и конденсацией ванадатов в водном растворе в кислой среде, или путем разложения пероксованадиевых соединений, образованных при растворении кристаллического V2O5 в растворе пероксида водорода.

Углеродный материал предварительно обработан раствором пероксида водорода в кислой среде.

Обработка углеродного материала пероксидом водорода обеспечивает улучшение адгезии углеродного материала к поверхности V2O5.

В качестве углеродного материала применен материал, выбранный из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь.

Композитный материал содержит ядро из наностержней V2O5 и оболочку из графена.

Литиевый аккумулятор содержит корпус, выполненный с возможностью размещения в нем катода и анода из металлического Li, находящиеся на расстоянии друг от друга и помещенные в электролит, которым заполняют корпус аккумулятора, причем катод выполнен в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,1-1 г/мл, содержащей катодный материал, растворенный в ацетоне.

При концентрации суспензии менее 0,1 г/мл она получается густой, а при концентрации суспензии более 1 г/мл - жидкой, что не обеспечивает возможность ее нанесения и закрепления на токосъемнике.

Токосъемник выполнен в виде фольги или сетки.

Покрытие токосъемника выполнено с возможностью дополнительного содержания в суспензии гидрофобной полимерной связки в количестве 0-20 мас. %. При содержании гидрофобной связки в суспензии более 20 мас. % приводит к снижению электронной проводимости катодного материала.

В качестве гидрофобной полимерной связки применены поливинилидендифторид или тетрафторэтилен.

В качестве электролита применена соль, растворенная в растворителе и выбранная из группы: перхлорат лития, гексафторфосфат лития, тетрафторборат лития.

Растворитель выбран из группы: пропиленкарбонат, этиленкарбонат, бутилен карбонат, диметилкарбонат, этил метил карбонат, диэтилкарбонат, 1,2-диметоксиэтан, 1,3-диоксолан, тетрагидрофуран, диметиловый эфир диэтиленгликоля, диметиловый эфир триэтиленгликоля, дибутиловый эфир диэтиленгликоля, диметилсульфоксид, гексафторфосфат 1-этил-3-метилимидазолия, тетрафторборат 1-этил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-этил-3-метилимидазолия, гексафторфосфат 1-бутил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-бутил-3-метилимидазолия, гексафторфосфат 1-метил-1-пропилпиперидиния, бис-трифторметилсульфонилимид 1-метил-1-пропилпиперидиния или их различные смеси.

Пример 1

Получают гидрогель V2O5 путем гидролиза органических производных ванадиевой кислоты. Затем гидрогель в количестве 60 мас. % смешивают с углеродным материалом в количестве 40 мас. %, выбранным из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь. Смесь гидрогеля и углеродного материала помещают и выдерживают в герметичном тефлоновом автоклаве при температуре 200°С и давлении 100 МПа в течение суток смеси, с целью получения композиционного материала, содержащего наностержни V2O5 в оболочке из графена. После чего осуществляют центрифугирование полученного композиционного материала с целью удаления влаги. Затем осуществляют промывку в дистилированной воде композитного материала с целью удаления примесей, содержащих ионы водорода, ванадат ионы и сушку композиционного материала при температуре 50°С.

Пример 2

Получают гидрогель V2O5 путем поликонденсацией ванадатов в водном растворе в кислой среде. Затем гидрогель в количестве 95 мас. % смешивают с углеродным материалом в количестве 5 мас. %, выбранным из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь. Смесь гидрогеля и углеродного материала помещают и выдерживают в герметичном тефлоновом автоклаве при температуре 130°С и давлении 600 МПа в течение суток смеси, с целью получения композиционного материала, содержащего наностержни V2O5 в оболочке из графена. После чего осуществляют центрифугирование полученного композиционного материала с целью удаления влаги. Затем осуществляют промывку в дистилированной воде композитного материала с целью удаления примесей, содержащих ионы водорода, ванадат ионы и сушку композиционного материала при температуре 50°С.

Пример 3

Аккумулятор, содержащий анод из металлического Li, катод в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,5 г/мл, содержащей композитный катодный материал, представляющий собой ядро из наностержней V2O5 и оболочку из графена, растворенный в ацетоне и электролит, содержащий 1 M LiClO4 в смеси пропиленкарбоната и диметоксиэтана в соотношении 7:3 по объему, работает следующим образом. При разряде аккумулятора литиевый анод растворяется с образованием ионов Li+, которые переходят в электролит, содержащий 1 M LiClO4 в смеси пропиленкарбоната и диметоксиэтана в соотношении 7:3. За счет наличия в электролите соли LiClO4 ионы Li+ внедряются в структуру катодного материала с образованием литий-содержащих фаз. При заряде ионы Li+ выходят из структуры катодного материала, поступают в электролит и затем равномерно осаждаются в виде металла на поверхность анода.

Как показали эксперименты, в отличие от аккумулятора, раскрытого в наиболее близком аналоге, у аккумулятора по заявленному изобретению, содержащего катод в виде металлического токосъемника, на поверхность которого нанесено покрытие в виде суспензии концентрацией 0,1-1 г/мл, включающей композитный материал, полученный согласно заявленному способу и представляющий собой ядро из наностержней V2O5 и оболочку из графена, повышается удельная емкость на 150 мАч/г (см. фиг. 1, 2), а также падение емкости после 30 циклов не превышает 3% (см. фиг. 3, 4).

Таким образом, предлагаемое изобретение позволяет получить аккумулятор, имеющий более высокую емкость и количество циклов перезарядки аккумулятора.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

Похожие патенты RU2585176C1

название год авторы номер документа
АНОДНЫЙ МАТЕРИАЛ С ПОКРЫТИЕМ И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ 2014
  • Семененко Дмитрий Александрович
  • Цыганков Петр Анатольевич
  • Белова Алина Игоревна
  • Иткис Даниил Михайлович
  • Кривченко Виктор Александрович
  • Рац Никита Александровна
RU2579357C1
ЭЛЕКТРОД ДЛЯ ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Семененко Дмитрий Александрович
  • Белова Алина Игоревна
  • Иткис Даниил Михайлович
  • Кривченко Виктор Александрович
  • Воронин Павел Владимирович
RU2579445C2
ПОРИСТЫЙ ЛИТИЕВЫЙ АНОД 2016
  • Белова Алина Игоревна
  • Иткис Даниил Михайлович
  • Кривченко Виктор Александрович
  • Рац Никита Александрович
RU2626457C1
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ 2014
  • Рулев Алексей Антонович
  • Белова Алина Игоревна
  • Семененко Дмитрий Александрович
  • Иткис Даниил Михайлович
RU2579145C1
ЛИТИЙ-ВОЗДУШНЫЙ АККУМУЛЯТОР И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Семененко Дмитрий Александрович
  • Белова Алина Игоревна
  • Иткис Даниил Михайлович
RU2591203C2
ЛИТИЙ-ВОЗДУШНЫЙ АККУМУЛЯТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Семененко Дмитрий Александрович
  • Плешаков Егор Андреевич
  • Белова Алина Игоревна
  • Иткис Даниил Михайлович
RU2578196C2
КАТОДНЫЙ МАТЕРИАЛ ДЛЯ ЛИТИЕВОГО ИСТОЧНИКА ТОКА 2011
  • Попова Светлана Степановна
  • Барышева Светлана Владимировна
  • Денисов Алексей Владимирович
  • Овсянкина Елена Николаевна
  • Бычкова Алина Александровна
RU2457585C1
Композитный катодный материал и способ его получения 2020
  • Володин Алексей Александрович
  • Слепцов Артем Владимирович
  • Арбузов Артем Андреевич
  • Фурсиков Павел Владимирович
  • Тарасов Борис Петрович
RU2758442C1
КАТОДНАЯ СМЕСЬ С УЛУЧШЕННОЙ ЭФФЕКТИВНОСТЬЮ И УДЕЛЬНОЙ ЭНЕРГИЕЙ ЭЛЕКТРОДА 2009
  • Чой Сангхоон
  • Ли Йонг Тае
  • Парк Хонг-Киу
  • Парк Соо Мин
  • Кил Хио-Шик
  • Парк Чеол-Хи
RU2454755C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО КОМПОЗИТНОГО МАТЕРИАЛА ДЛЯ ПОЛОЖИТЕЛЬНОГО ЭЛЕКТРОДА ЛИТИЙ-СЕРНОГО АККУМУЛЯТОРА, ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРОД И ЛИТИЙ-СЕРНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ 2016
  • Кривченко Виктор Александрович
  • Капитанова Олеся Олеговна
  • Иткис Даниил Михайлович
RU2654856C1

Иллюстрации к изобретению RU 2 585 176 C1

Реферат патента 2016 года СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНОГО МАТЕРИАЛА, КАТОДНЫЙ МАТЕРИАЛ И ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР

Изобретение относится к способу изготовления композитного катодного материала. Способ включает следующие стадии: получение гидрогеля или ксерогеля V2O5; выдержка в герметичном тефлоновом автоклаве при температуре 130-200°C и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5, и углеродного материала с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена; центрифугирование полученного композиционного материала; промывка композиционного материала; сушка композиционного материала при температуре 50°C. Также предложены композитный катодный материал и литиевый аккумулятор. Изобретение позволяет увеличить емкость и количество циклов перезарядки аккумулятора. 3 н. и 9 з.п. ф-лы, 4 ил., 3 пр.

Формула изобретения RU 2 585 176 C1

1. Способ изготовления композитного катодного материала, включающий следующие стадии:
- получение гидрогеля или ксерогеля V2O5;
- выдержка в герметичном тефлоновом автоклаве при температуре 130-200°C и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5 и углеродного материала с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена;
- центрифугирование полученного композиционного материала;
- промывка композиционного материала;
- сушка композиционного материала при температуре 50°C.

2. Способ по п.1, характеризующийся тем, что смесь содержит компоненты, при следующем соотношении, мас.%:
гидрогель или ксерогель V2O5 - 60-95;
углеродный материал - 5-40.

3. Способ по п.1, характеризующийся тем, что гидрогель или ксерогель получают в результате гидролиза органических производных ванадиевой кислоты или поликонденсацией ванадатов в водном растворе в кислой среде, или путем разложения пероксованадиевых соединений, образованных при растворении кристаллического V2O5 в растворе пероксида водорода.

4. Способ по п.1, характеризующийся тем, что углеродный материал предварительно обработан раствором пероксида водорода в кислой среде.

5. Способ по п.4, характеризующийся тем, что в качестве углеродного материала применен материал, выбранный из группы: оксид графита, восстановленный оксид графита, ацетиленовая сажа, активированный уголь.

6. Композитный катодный материал, полученный способом по пп.1-5 и содержащий ядро из наностержней V2O5 и оболочку из графена.

7. Литиевый аккумулятор, содержащий анод из металлического Li, электролит и катод в виде металлического токосъемника, выполненного с возможностью покрытия суспензией концентрацией 0,1-1 г/мл, содержащей материал по п.6, растворенный в ацетоне.

8. Аккумулятор по п.7, характеризующийся тем, что токосъемник выполнен в виде фольги или сетки.

9. Аккумулятор по п.8, характеризующийся тем, что покрытие токосъемника выполнено с возможностью дополнительного содержания в суспензии гидрофобной полимерной связки в количестве 0-20 мас.%.

10. Аккумулятор по п.9, характеризующийся тем, что в качестве гидрофобной полимерной связки применены поливинилидендифторид или тетрафторэтилен.

11. Аккумулятор по п.7, характеризующийся тем, что в качестве электролита применена соль, растворенная в растворителе и выбранная из группы: перхлорат лития, гексафторфосфат лития, тетрафторборат лития.

12. Аккумулятор по п.11, характеризующийся тем, что растворитель выбран из группы: пропиленкарбонат, этиленкарбонат, бутиленкарбонат, диметилкарбонат, этилметилкарбонат, диэтилкарбонат, 1,2-диметоксиэтан, 1,3-диоксолан, тетрагидрофуран, диметиловый эфир диэтиленгликоля, диметиловый эфир триэтиленгликоля, дибутиловый эфир диэтиленгликоля, диметилсульфоксид, гексафторфосфат 1-этил-3-метилимидазолия, тетрафторборат 1-этил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-этил-3-метилимидазолия, гексафторфосфат 1-бутил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-бутил-3-метилимидазолия, гексафторфосфат 1-метил-1-пропилпиперидиния, бис-трифторметилсульфонилимид 1-метил-1-пропилпиперидиния или их различные смеси.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585176C1

US 20120321953 A1, 20.12.2012
CN 103746100 A, 23.04.2014
CN 103855373 A, 11.06.2014
ВОЛКОВ В.Л
и др., Катодные материалы из ксерогелей оксида ванадия(V) в химических источниках тока, Электрохимическая энергетика, 2001, т
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 585 176 C1

Авторы

Семененко Дмитрий Александрович

Белова Алина Игоревна

Иткис Даниил Михайлович

Кривченко Виктор Александрович

Даты

2016-05-27Публикация

2014-11-21Подача