СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ Российский патент 2016 года по МПК C25C3/06 G01N23/00 

Описание патента на изобретение RU2586167C1

Изобретение относится к электролитическому получению алюминия и может быть использовано при определении состава электролита с добавками фторида кальция, выраженного в виде такого технологического параметра, как криолитовое отношение (КО) (мольное отношения NaF/AlF3) методом рентгенофазового анализа.

Известен способ определения криолитового отношения электролита методом рентгенофлуоресцентного анализа [Патент РФ №2424379, МПК С25С 3/06, опубл. 17.11.09]. Способ включает построение градуировочных характеристик по интенсивностям флуоресценции аналитических Kα линий F, Al, Na, Mg с использованием стандартных образцов состава электролита, отбор пробы электролита, подготовку образца к анализу, определение концентраций элементов по построенным градуировочным характеристикам и определение значения криолитового отношения по определенным концентрациям элементов.

К недостаткам способа можно отнести необходимость построения градуировочных характеристик и наличия аттестованных стандартных образцов состава электролита, идентичных анализируемым пробам по фазовому составу и микрокристаллической структуре фаз.

Известен способ определения криолитового отношения в электролитах рентгенодифрактометрическим методом [Кирик С.Д., Куликова Н.Н., Якимов И.С., Клюева Т.И., Баранов И.А., Бузунов В.Ю., Голощапов В.Г. Цветные металлы, 1996, №9, стр. 75-77; С.Н. Архипов, А.А. Стекольщиков, Г.А. Лютинская, Л.Н. Максимова, Л.А. Пьянкова. Заводская лаборатория. Диагностика материалов 2006, том 72, №9, стр. 34-36]. Способ заключается в определении кристаллических фаз компонентов в охлажденной пробе электролита с последующим пересчетом в соответствии со стехиометрией значения КО и содержания CaF2 и MgF2. Содержание фаз определяется по заранее построенным градуировочным зависимостям от интенсивности их аналитических дифракционных линий, а общее содержание фторида кальция - по градуировочной зависимости интенсивности рентгеновской флуоресценции аналитической линии Ca, регистрируемой на специальном флуоресцентном канале.

К недостаткам способа можно отнести то, что для построения градуировочных характеристик необходимо использовать аттестованные стандартные образцы фазового состава (СОФС) с известным содержанием определяемых фаз, идентичные анализируемым пробам по фазовому составу и микрокристаллической структуре фаз и обеспечивающие градуировку дифрактометра по крайней мере по 6 фазам. Создание многофазных СОФС представляет сложную и трудоемкую научно-техническую задачу, т.к. от точности определения в них фазового состава зависит точность градуировки дифрактометра и анализа КО. Кроме того, описанный способ подразумевает периодическое мониторирование интенсивности измерительной системы для контроля дрейфа градуировочных характеристик. Создание СОФС электролита, градуировка прибора, мониторирование интенсивности рентгеновской трубки - данные мероприятия приводят к дополнительным затратам времени и ресурсов, а также могут служить дополнительным источником погрешности анализа КО.

Данный способ анализа принят за прототип.

Преимуществом предлагаемого способа является прямое автоматическое определение КО с точностью КО ±0,04 ед.абс КО без использования СОФС, без построения градуировочных характеристик фаз и без необходимости мониторирования дрейфа прибора.

Техническим результатом предлагаемого способа является исключение всех операций, связанных с градуировкой по фазам, при автоматическом рентгенофазовом анализе состава проб электролита с точностью, характеризуемой СКО ±0,04 ед.абс КО.

Указанный технический результат достигается тем, что способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, согласно изобретению концентрации вышеперечисленных фаз электролита определяют по формуле:

C j = ( I j a / K j a ) / ( l M I l a / K j a ) ,

где: I j a - интенсивность аналитической линии j-й фазы, K j a - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М - количество фторидных фаз,

а криолитовое отношение определяют по формуле:

K O = 2 × j α j C j j β j C j ,

где: Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Предлагаемый способ отличается от метода, применяемого в ближайшем аналоге отсутствием построения градуировочных характеристик, и не требует использования СОФС. Корундовые числа, накапливаемые в базах дифракционных данных, - это отношение интенсивностей максимальных дифракционных пиков анализируемой фазы и корунда в смеси 1:1:

Однако использование корундовых чисел фаз из баз дифракционных данных не всегда обеспечивает высокую точность фазового анализа из-за особенностей конкретного фазового состава анализируемых материалов, где реальные корундовые числа фаз - другие. Это в полной мере относится и к задаче анализа промышленных электролитов.

Точные корундовые числа фаз могут рассчитываться по данным химического анализа фторидных компонентов представительной группы проб промышленного электролита и интенсивностям аналитических дифракционных линий фаз в этих же пробах по методу [2] или аналогичными расчетными методами. Для расчета корундовых чисел также можно, и предпочтительнее, использовать комплект стандартных образцов промышленного электролита с аттестованным химическим составом (при его наличии).

Сущность способа заключается в том, что в отобранных и подготовленных к анализу образцах электролита с учетом интенсивности фона измеряется интенсивность аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF. Позиции используемых аналитических линий и расчетные корундовые числа фаз приведены в таблице 1.

С использованием расчетных корундовых чисел, определенных по [2], рассчитывается суммарная интенсивность аналитических линий фаз:

где CryInt, ChiInt, FluInt, CaCry2Int, CaCry1Int, NaFInt - интенсивность аналитических дифракционных линий фаз, указанных в таблице 1.

Концентрации фаз Cj определяются согласно (2) по следующим формулам:

При КО<3,0 фаза NaF отсутствует и ее концентрация не рассчитывается.

Криолитовое отношение вычисляют по формуле:

где CNaF, C A l F 3 - валовые концентрации фтористого натрия и фтористого алюминия в пробе электролита. Поскольку криолитовое отношение - это мольное отношение фтористого натрия к фтористому алюминию, а молекулярная масса NaF вдвое меньше молекулярной массы AlF3, в числителе формулы (5) стоит множитель 2.

Валовые концентрации NaF и AlF3 определяются путем вычленения из каждой фазы содержащихся в ней массовых долей фторида натрия и фторида алюминия. Это можно обобщить следующей, эквивалентной (5), формулой:

K O = 2 × j α j C j j β j C j ( 6 )

где Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Массовые доли фтористого натрия и фтористого алюминия во фторсодержащих фазах проб электролита приведены в таблице 2.

Окончательно формула для вычисления криолитового отношения примет вид:

В предлагаемом способе за счет определения концентраций минералогических фаз электролита производства алюминия по формуле (4), применение которой не требует использования стандартных образцов фазового состава, построения градуировочных характеристик фаз и коррекции их дрейфа, и дальнейшем расчете КО по формуле (7) снижено количество операций при рентгенофазовом анализе состава проб электролита с сохранением точности, характеризуемой стандартным отклонением ±0,04 ед.абс КО, то есть достаточной для технологического контроля химического состава электролита в производстве алюминия.

Примеры определения криолитового отношения электролита

В качестве тестируемых материалов в примерах были использованы 15 отраслевых стандартных образцов промышленного электролита с добавками фторида кальция с аттестованными характеристиками [3]. Пробы отраслевых стандартных образцов электролита подготавливали к анализу в соответствии с методикой подготовки проб промышленного электролита к рентгенодифракционному измерению КО. Далее проводили их анализ по прототипу и по предлагаемому способу на широко используемом для контроля КО в алюминиевой промышленности специализированном рентгеновском дифрактометре X'pert Pro (PANalytical, Нидерланды).

Пример 1 (прототип).

В таблице 3 приведены аттестованные и измеренные по прототипу криолитовые отношения в подготовленных пробах 15-ти отраслевых стандартных образцов (ОСО) электролита.

На рис. 1 приведена графическая зависимость измеренного значения КО от аттестованного значения КО, построенная по данным таблицы 3. Точность определения криолитового отношения по прототипу составляет 0,033 ед. КО.

Пример 2 (предлагаемый способ)

Измеряют интенсивности аналитических дифракционных линий фаз, позиции которых указаны в таблице 1, криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 в подготовленных пробах 15-ти ОСО (аналогичных используемым в предыдущем примере). По формуле (2) рассчитывают концентрации приведенных фаз в образцах, используя следующие значения корундовых чисел соответственно: K c r y a = 0 , 4 9 , K c h i a = 1 , 1 5 , K C a C r y 1 a = 0 , 3 5 , K C a C r y 2 a = 0 , 8 5 , K f l u a = 3 , 8 3 . Величину криолитового отношения стандартных образцов рассчитывают по формуле (7).

В таблице 4 приведены аттестованные и измеренные по предлагаемому способу криолитовые отношения стандартных образцов электролита.

На рис. 2 приведена графическая зависимость измеренного значения КО от аттестованного значения КО, построенная по данным таблицы 4.

Как следует из приведенного примера, использование предложенного способа анализа проб электролита на рентгеновском дифрактометре позволяет добиться точности определения КО 0,034 ед. КО.

Список использованной литературы

1. С.R. Hubbard, Е.Н. Evans, and D.K. Smith. The Reference Intensity Ratio for Computer Simulated Powder Patterns // J. Appl. Cryst. 9, 169 (1976).

2. Якимов И.С., Дубинин П.С., Пиксина O.E. Интеграция методов группового количественного рентгенофазового анализа и ссылочных интенсивностей // Контроль. Диагностика. 2010. №12. С. 42-47.

3. Якимов И.С., Дубинин П.С., Залога А.Н., Пиксина О.Е., Кирик С.Д. Разработка отраслевых стандартных образцов электролита алюминиевых электролизеров // Стандартные образцы. 2008. №4. С. 34-42.

Похожие патенты RU2586167C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПОНЕНТНОГО СОСТАВА И КРИОЛИТОВОГО ОТНОШЕНИЯ ТВЕРДЫХ ПРОБ КАЛИЙСОДЕРЖАЩЕГО ЭЛЕКТРОЛИТА АЛЮМИНИЕВОГО ПРОИЗВОДСТВА МЕТОДОМ РФА 2014
  • Зайцева Юлия Николаевна
  • Кирик Сергей Дмитриевич
  • Якимов Игорь Степанович
  • Дубинин Петр Сергеевич
  • Пиксина Оксана Евгеньевна
  • Симаков Дмитрий Александрович
  • Гусев Александр Олегович
  • Ружников Сергей Григорьевич
RU2550861C1
СПОСОБ ПОДГОТОВКИ ПРОБ КАЛЬЦИЙСОДЕРЖАЩЕГО ЭЛЕКТРОЛИТА АЛЮМИНИЕВОГО ПРОИЗВОДСТВА ДЛЯ АНАЛИЗА СОСТАВА МЕТОДОМ РФА 2010
  • Зайцева Юлия Николаевна
  • Ружников Сергей Григорьевич
  • Якимов Игорь Степанович
  • Кирик Сергей Дмитриевич
RU2418104C1
СПОСОБ ПОДГОТОВКИ ПРОБ КАЛИЙСОДЕРЖАЩЕГО ЭЛЕКТРОЛИТА АЛЮМИНИЕВОГО ПРОИЗВОДСТВА ДЛЯ АНАЛИЗА СОСТАВА И ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ МЕТОДОМ РФА 2013
  • Зайцева Юлия Николаевна
  • Кирик Сергей Дмитриевич
  • Якимов Игорь Степанович
  • Дубинин Петр Сергеевич
  • Пиксина Оксана Евгеньевна
  • Ружников Сергей Григорьевич
RU2542927C1
СПОСОБ ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ЭЛЕКТРОЛИТА С ДОБАВКАМИ ФТОРИДОВ КАЛЬЦИЯ, МАГНИЯ И КАЛИЯ РЕНТГЕНОФЛУОРЕСЦЕНТНЫМ МЕТОДОМ 2015
  • Ружников Сергей Григорьевич
  • Якимов Игорь Степанович
  • Кирик Сергей Дмитриевич
  • Дубинин Петр Сергеевич
  • Пиксина Оксана Евгеньевна
  • Симаков Дмитрий Александрович
  • Гусев Александр Олегович
RU2616747C1
СПОСОБ ЭКСПРЕСС-ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ И КОНЦЕНТРАЦИИ ФТОРИДА КАЛИЯ В ЭЛЕКТРОЛИТЕ ПРИ ПОЛУЧЕНИИ АЛЮМИНИЯ 2019
  • Донцов Александр Викторович
  • Бакин Кирилл Борисович
  • Симаков Дмитрий Александрович
  • Гусев Александр Олегович
RU2717442C1
РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ЭЛЕКТРОЛИТА 2009
  • Кирик Сергей Дмитриевич
  • Пиксина Оксана Евгеньевна
  • Ружников Сергей Григорьевич
  • Якимов Игорь Степанович
RU2424379C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКСИДА АЛЮМИНИЯ В ЭЛЕКТРОЛИТЕ 2007
  • Паньков Сергей Дмитриевич
  • Потапова Лилия Анатольевна
  • Таскина Анна Вячеславовна
  • Смагунова Антонина Никоновна
RU2358041C2
Способ получения бесщелочного минерализатора для обжига клинкера из фторсодержащих отходов алюминиевого производства 2023
  • Куликов Борис Петрович
  • Васюнина Наталья Валерьевна
  • Дубова Ирина Владимировна
  • Гильманшина Татьяна Ренатовна
  • Баланев Руслан Олегович
  • Тимофеев Андрей Алексеевич
RU2821274C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОСТАВА ЭЛЕКТРОЛИТА 2016
  • Симаков Дмитрий Александрович
  • Гусев Александр Олегович
  • Бакин Кирилл Борисович
  • Донцов Александр Викторович
RU2651931C2
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ ДЛЯ ОБОЖЖЕННЫХ АНОДНЫХ БЛОКОВ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ 2023
  • Пузанов Илья Иванович
  • Завадяк Андрей Васильевич
  • Огорельцева Нина Валерьевна
  • Нагибин Геннадий Ефимович
  • Фёдорова Елена Николаевна
  • Демьянов Алексей Сергеевич
RU2808308C1

Иллюстрации к изобретению RU 2 586 167 C1

Реферат патента 2016 года СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: C j = ( I j a / K j a ) / ( l M I l a / K j a ) , а криолитовое отношение определяют по формуле: K O = 2 × j α j C j j β j C j где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.

Формула изобретения RU 2 586 167 C1

Способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, отличающийся тем, что определяют концентрации упомянутых минералогических фаз пробы электролита по формуле:

где: - интенсивность аналитической дифракционной линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической дифракционной линии, М- количество фторидных фаз,
а криолитовое отношение КО определяют по формуле:

где: Cj - концентрации минералогических фаз пробы электролита; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Документы, цитированные в отчете о поиске Патент 2016 года RU2586167C1

РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ЭЛЕКТРОЛИТА 2009
  • Кирик Сергей Дмитриевич
  • Пиксина Оксана Евгеньевна
  • Ружников Сергей Григорьевич
  • Якимов Игорь Степанович
RU2424379C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКСИДА АЛЮМИНИЯ В ЭЛЕКТРОЛИТЕ 2007
  • Паньков Сергей Дмитриевич
  • Потапова Лилия Анатольевна
  • Таскина Анна Вячеславовна
  • Смагунова Антонина Никоновна
RU2358041C2
Привод для тележки канатного транспортера, несущей конечные натяжные канатные шкивы 1928
  • Симоненко А.А.
SU9783A1
US 5822072A, 13.10.1998
CN 102507679 A, 20.06.2012.

RU 2 586 167 C1

Авторы

Дубинин Петр Сергеевич

Пиксина Оксана Евгеньевна

Самойло Александр Сергеевич

Якимов Игорь Степанович

Даты

2016-06-10Публикация

2014-12-23Подача