ЭЛЕКТРОЛИТ АНОДИРОВАНИЯ И МЕДНЕНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ Российский патент 2016 года по МПК C25D5/44 

Описание патента на изобретение RU2588702C2

Изобретение относится к электрохимическому способу нанесения покрытий на изделия из алюминия и его сплавов.

Для нанесения качественных медных гальванических покрытий на алюминий и его сплавы часто используется операция предварительного анодирования в смеси серной и ортофосфорной кислот (15% (об.) H2SO4 и 15% (об.) Н3РО4), после чего наносят слой меди из стандартного сернокислого электролита меднения [1]. Такая технология хотя и эффективна, но требует дополнительных материальных затрат.

Близость составов и режимов работы электролитов анодирования и меднения дает возможность проводить эти операции в одной ванне при простой смене полярности электродов. При таком способе достигается значительная экономия химикатов, воды и оборудования.

Известен способ анодировать и осаждать медь в растворе следующего состава, г/л [2]:

CuSO45H2O 210 H2SO4 70 Вода остальное

Анодирование проводилось при анодной плотности тока ja=1,5-2,5 А/дм2 в течение 3 минут и температуре 30-35°С, после чего полярность тока переключалась и в течение 2-3 минут анодированная поверхность покрывалась медью при катодной плотности тока 4 А/дм2. Недостаток этой ванны меднения - плохая рассеивающая способность и образование шероховатых покрытий. К тому же качественные осадки меди, имеющие высокую адгезию с поверхностью, могут быть получены только на сплавах Д 16 AT.

Наиболее близким по составу к предлагаемому является электролит следующего состава (массовая доля, %) [3]:

Н3РО4 15-25 Соль осаждаемого металла (Zn, Cd, Cu) 15-25 Азотсодержащий полиалкилен (ПЭПА) 0,01-1 Вода остальное

Однако предлагаемый состав электролита подходит, прежде всего, для сплава марки Д16, включающего в своем составе до 5% меди. Для других же сплавов процесс анодирования будет протекать при более высоком напряжении [1]. Это повлечет за собой значительные энергетические затраты и, что крайне важно, к непрокрытию медью по всей поверхности деталей, особенно сложнопрофилированных. К тому же, использование полиэтиленполиамина (ПЭПА) крайне нежелательно вследствие его высокой токсичности.

Таким образом, универсального электролита анодирования и меднения для всех алюминиевых сплавов не существует, так как известные технологии подходят в основном только для сплавов Д-16 и в основном для деталей несложного профиля.

Задачей предлагаемого изобретения является разработка экономичного универсального электролита совмещенного анодирования и меднения для получения качественных медных гальванопокрытий на деталях сложного профиля из любых типов алюминиевых сплавов.

Технический результат - получение высококачественных медных гальванопокрытий, повышение качества металлопокрытия для широкого диапозона обрабатываемых сплавов.

Технический результат достигается тем, что в состав электролита, состоящий из ортофосфорной кислоты и сульфата меди, дополнительно вводится серная кислота и бифторид аммония при следующем соотношении компонентов (г/л):

Н3РО4 150-200 H2SO4 140-150 Сульфат меди 110-120 Бифторид аммония 0,1-0,2 Вода остальное

Выбор компонентов электролита обусловлен следующим. Предпосылкой предлагаемого изобретения является то, что универсальным электролитом анодирования для всех типов алюминиевых сплавов является электролит, содержащий 15% (об.) H2SO4 и 15% (об.) Н3РО4. Однако при введении в его состав CuSO4·5Н2О в количестве 200-250 г/л, необходимом для меднения, наблюдалось выпадение осадка сульфата меди. Это обусловлено снижением его растворимости при высоких (15% (об.)) концентрациях H2SO4 [4]. При рабочих концентрациях кислот содержание CuSO4·5Н2О составляет всего 50 г/л. В этом случае рабочие плотности тока составят всего 0,2-0,5 А/дм2, что приводит к значительному увеличению времени нанесения медного покрытия.

В отсутствии ортофосфорной кислоты в составе электролита адгезия покрытия с основой имеет очень низкую величину, а в отсутствии серной - достигается очень высокое напряжение на ванне (выше 31 В).

Исходя из вышесказанного выбиралось соотношение концентраций компонентов (серной и ортофосфорной кислот) электролита. Удовлетворительная адгезия покрытия с основой получалась в том случае, когда содержание ортофосфорной кислоты в электролите было не менее 150 г/л, а пониженное напряжение на ванне при содержании серной кислоты не менее 100 г/л.

Известен электролит для анодирования алюминия и его сплавов, имеющий следующий состав: 150 г/л H2SO4+150 г/л Н3РО4 [2]. При использовании такого электролита в качестве базового и введении в его состав сульфата меди в количестве 100-120 г/л наблюдается полное прокрытие медью поверхности анодированной детали.

В работах [5, 6] было указано, что положительный эффект при анодировании и нанесении медного покрытия достигается при введении в электролит добавки фторсодержащих неорганических веществ (в частности, бифторида аммония). Введение таких добавок в электролит анодирования обусловлено тем, что при последующем нанесении медного покрытия в ванне сернокислого меднения осадок меди получается мелкокристаллическим плотноупакованным. Это в значительной мере улучшает поверхностные характеристики медного покрытия. Введение таких добавок в электролит меднения приводит к повышению рассеивающей способности электролита примерно в 2 раза. Этот факт особенно важен при нанесении медного покрытия на сложнопрофилированные детали. При использовании указанных концентраций (2-15 г /л) наблюдалось отслоение покрытия, связанное с разрушением оксидной пленки на поверхности алюминиевой детали. При снижении концентрации бифторида аммония до 0,1-0,2 г/л в электролите адгезия покрытия была хорошей даже при отжиге при температуре 200°С.

Учитывая вышесказанное, искомый состав предлагаемого электролита будет следующим: 150 г/л H2SO4+150 г/л H3PO4+110-120 г/л CuSO4·5H2O+0,1-0,2 г/л NH4F·HF, вода остальное (до 1 литра). Изменение концентраций компонентов в растворе приводит к ухудшению качества осадка.

При определении режимов работы предлагаемого электролита было установлено, что оптимальной рабочей плотностью тока является 0,9-1,1 А/дм2. При увеличении плотности тока свыше указанных интервалов наблюдалось образование порошкообразного некачественного медного покрытия. Время анодирования составляет 4-5 минут, а время меднения определяется необходимой толщиной медного покрытия.

Способ осуществляют следующим образом. Покрытию подвергали сложнопрофилированные детали, изготовленные из алюминиевых сплавов следующих марок АМц, АД0, АД1, АД31, АК4, АК9 ч, АЛ2. Предварительно детали обезжиривали в растворе NaOH концентрацией 50-70 г/л в течение 2-3 минут, осветляли в растворе HNO3:HF=3:1. Далее детали подвергали анодированию и меднению в предложенном электролите. Толщина медного покрытия составляет 9 мкм.

Примеры

Пример 1. Деталь из сплава марки АД1 анодидировалась в электролите состава 150 г/л H2SO4+150 г/л Н3РО4+120 г/л CuSO4·5Н2О, вода - остальное при комнатной температуре и анодной плотности тока 1А/дм2 в течение 4-5 минут. Напряжение на ванне при этом составило 15-18 В. Далее, переключая полярности электродов, наносилось медное покрытие при катодной плотности тока 1 А/дм2. При визуальном осмотре деталь была покрыта по всей поверхности, непрокрытий не было. Однако структура покрытия была крупнокристаллической, что приводит к ухудшению поверхностных характеристик медного покрытия (в частности его электропроводности).

Пример 2. Деталь из сплава марки АД1 анодидировалась в электролите состава 150 г/л H2SO4+150 г/л Н3РО4+120 г/л CuSO4·5H2O+0,2 г/л NH4F·HF, вода-остальное при комнатной температуре и анодной плотности тока 1 А/дм2 в течение 4-5 минут. Напряжение на ванне при этом составило 10-13 В. Далее, переключая полярности электродов, наносилось медное покрытие при катодной плотности тока 1 А/дм2. При визуальном осмотре деталь было покрыта по всей поверхности. Структура покрытия была мелкокристаллической.

После покрытия детали нагревали в вакуумной печи при температуре 200-230°С в течение 1 часа (стандартный прием). Прочность сцепления покрытия с основой определялась по методу сеток, методом крацевания медными щетками и по контролю отслоений гальванопокрытий после отжига. Опытные образцы успешно прошли все испытания. Отслоения покрытий не наблюдалось.

Источники информации

1. Девяткина Т.И., Спасская М.М., Рогожин В.В., Москвичев А.Н., Михаленко М.Г. Анодное оксидирование алюминия и его сплавов для получения качественных гальванических покрытий // Вестник Нижегородского государственного университета им. Н.И. Лобачевского. - 2013. - №.4 часть 1. - С. 109-114.

2. Климаков В.Н., Каушпедас З.П., Тиминскас А.С. Технология подготовки поверхности и нанесения электрохимических покрытий на алюминий и его сплавы. Обзор. М.: ЦНИИНТИКПК, 1989 г. - С. 24.

3. Герасименко А.А. Водный раствор для анодирования алюминиевых сплавов и последующего нанесения покрытий // А.с. 555173 C25D 11/06, C25D 3/22, C25D 3/26, C25D 3/38 опубл. 25.04.1977.

4. Грилихес С.Я., Тихонов К.И. Электролитические и химические покрытия. Теория и практика. Л.: Химия, 1990 г. - С.81.

5. Девяткина Т.И., Яровая Е.И., Рогожин В.В., Маркова Т.В., Михаленко М.Г. Анодное оксидирование сложнопрофильных деталей из алюминия и его сплавов с последующим электроосаждением медных покрытий // Журнал прикладной химии. - 2014. - т. 87. - №1. - С. 58-65.

6. Девяткина Т.И., Маркова Т.В., Рогожин В.В., Михаленко М.Г. Особенности гальванического меднения алюминиевых сплавов // Труды Нижегородского государственного технического университета им. Р.Е. Алексеева. - 2013. - №2 (99). - С. 237-244.

Похожие патенты RU2588702C2

название год авторы номер документа
ЭЛЕКТРОЛИТ ДЛЯ АНОДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ МЕДНЫХ ГАЛЬВАНОПОКРЫТИЙ 2013
  • Маркова Татьяна Владимировна
  • Девяткина Татьяна Игоревна
  • Рогожин Вячеслав Вячеславович
  • Михаленко Михаил Григорьевич
RU2529328C1
Электролит меднения анодированных алюминия и его сплавов 2022
  • Девяткина Татьяна Игоревна
  • Исаев Валерий Васильевич
  • Рогожин Вячеслав Вячеславович
  • Таранец Роман Владимирович
  • Ивашкин Евгений Геннадьевич
RU2784143C1
Способ нанесения никелевых покрытий на алюминиевые сплавы 2017
  • Девяткина Татьяна Игоревна
  • Лучнева Светлана Игоревна
  • Борисова Александра Евгеньевна
  • Рогожин Вячеслав Вячеславович
  • Михаленко Михаил Григорьевич
  • Ивашкин Евгений Геннадьевич
RU2661695C1
СПОСОБ НАНЕСЕНИЯ МЕДНОГО ГАЛЬВАНИЧЕСКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ АЛЮМИНИЯ И ЕГО СПЛАВОВ 2011
  • Девяткина Татьяна Игоревна
  • Рогожин Вячеслав Вячеславович
  • Большакова Ольга Александровна
  • Думитраш Ольга Владимировна
  • Михаленко Михаил Григорьевич
RU2471020C1
Способ получения композиционного электрохимического покрытия на основе меди с добавлением частиц электроэрозионной свинцовой бронзы 2021
  • Агеев Евгений Викторович
  • Агеева Екатерина Владимировна
  • Гвоздев Александр Евгеньевич
  • Переверзев Антон Сергеевич
  • Макаренко Павел Александрович
RU2780609C1
СПОСОБ МЕДНЕНИЯ АЛЮМИНИЯ 2002
  • Лукомский Ю.Я.
  • Румянцев Е.М.
  • Зеленюк Ю.И.
  • Манукян А.С.
  • Невский О.И.
  • Колодько Г.Н.
  • Грибков М.А.
RU2214483C1
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ ПЕРЕД ГАЛЬВАНИЧЕСКИМ МЕДНЕНИЕМ 2013
  • Ревазов Владимир Владимирович
  • Давлатьян Татьяна Арутюновна
  • Конарев Александр Андреевич
  • Круглов Виталий Сергеевич
  • Новикова Дарья Олеговна
  • Шавкин Сергей Викторович
  • Шиков Александр Константинович
RU2549037C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛНОВОДОВ МИЛЛИМЕТРОВОГО ДИАПАЗОНА 2014
  • Ереско Татьяна Трофимовна
  • Хоменко Игорь Иванович
  • Хоменко Иван Иванович
  • Ереско Сергей Павлович
RU2560804C1
СПОСОБ МЕДНЕНИЯ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ УГЛЕРОДНЫХ ВОЛОКОН 2006
  • Борисова Наталья Валерьевна
  • Распопова Галина Анатольевна
  • Попова Светлана Степановна
  • Артеменко Александр Александрович
  • Сладков Олег Михайлович
  • Распопов Алексей Александрович
RU2328551C1
Защитное покрытие для медицинских инструментов и способ его нанесения 2017
  • Тележкина Алина Валерьевна
  • Кузнецов Виталий Владимирович
  • Кругликов Сергей Сергеевич
RU2674694C1

Реферат патента 2016 года ЭЛЕКТРОЛИТ АНОДИРОВАНИЯ И МЕДНЕНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ

Изобретение относится к области гальванотехники и может быть использовано перед нанесением медных покрытий на изделия из алюминия и его сплавов. Электролит содержит ортофосфорную кислоту и сульфат меди, при этом он дополнительно содержит серную кислоту и бифторид аммония при следующих соотношениях компонентов, г/л: H3PO4 - 150-200; H2SO4 - 140-150; CuSO4·5H2O - 110-120; NH4F·HF - 0,1-0,2 и воду - остальное. Технический результат: получение высококачественных медных гальванопокрытий на деталях сложного профиля из любых типов алюминиевых сплавов. 2 пр.

Формула изобретения RU 2 588 702 C2

Электролит анодирования и меднения алюминия и его сплавов перед нанесением медных гальванопокрытий, содержащий ортофосфорную кислоту и сульфат меди, отличающийся тем, что он дополнительно содержит серную кислоту и бифторид аммония при следующих соотношениях компонентов:
H3PO4 150-200 г/л H2SO4 140-150 г/л CuSO4·5H2O 110-120 г/л NH4F·HF 0,1-0,2 г/л вода остальное

Документы, цитированные в отчете о поиске Патент 2016 года RU2588702C2

Водный раствор для анодирования алюминиевых сплавов и последующего нанесения покрытий 1974
  • Герасименко Анатолий Андреевич
SU555173A1

RU 2 588 702 C2

Авторы

Девяткина Татьяна Игоревна

Маркова Татьяна Владимировна

Рогожин Вячеслав Вячеславович

Михаленко Михаил Григорьевич

Даты

2016-07-10Публикация

2014-09-15Подача