СПОСОБ ПОЛУЧЕНИЯ ФОРМОВАННОЙ КОМПОЗИТНОЙ МЕМБРАНЫ Российский патент 2016 года по МПК B01D71/02 B01D69/02 

Описание патента на изобретение RU2592529C2

Изобретение относится к технологии получения композитной формованной мембраны на основе неорганических природных силикатов и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности, где существует необходимость в очистке растворов, требующих обеззараживания.

Известен способ получения керамического мембранного фильтра на основе неорганических микросфер силикатной природы, причем в виде двухслойной мембраны, второй слой из микросфер меньшего размера с последующим прокаливанием при температуре 770°С в фарфоровых формах. Затем быстро охлаждали до температуры 500°С и медленно охлаждали в течение четырех часов (см. патент РФ №2190461, МПК B01D 71/02, 2002 г.).

Недостатками этого способа являются: высокие энергетические затраты, сложность технологии, а именно выдерживание температурного режима, сложность технологии нанесения двухслойной мембраны при насыпании и заливании.

Наиболее близким решением к заявляемому (прототип) является способ изготовления формованных керамических мембран, включающий измельчение смеси исходных компонентов, приготовление суспензии, ее высушивание и последующий обжиг, где в качестве исходных кремнийсодержащих компонентов используют кембрийскую глину, гранитный отсев, стеклобой и бой керамических изделий, а также доломит, при этом, сушку суспензии осуществляют в кипящем слое, а обжиг при 650-700°С (см. патент РФ №2375101, МПК B01D 39/06, 2009 г.).

Недостатками данного способа является уникальность отдельных компонентов, относительно высокая температура обжига -700°С (т.е. высокие энергетические затраты); повышенная хрупкость мембран в связи с тем, что при таких температурах происходит расплав компонентов исходной смеси; кроме того, данные мембраны не обладают обеззараживающим действием.

Задача данного изобретения - создание энергосберегающего способа изготовления формованных керамических мембран с повышенной механической прочностью, обладающих обеззараживающим действием при очистке зараженных стоков.

Технический результат заключается в том, что разработан способ изготовления формованной керамической мембраны, при котором происходит только спекание исходных компонентов смеси, а не их расплавление, от чего мембраны получаются более прочными, более пористыми и с меньшим размером пор. Чем мембрана более пористая и меньше размер пор, тем большей удерживающей способностью по отношению к веществам, имеющим большую молекулярную массу, она обладает. Кроме того, наличие в составе мембраны оксида кремния и оксихлорида циркония придает мембране большую химическую и термическую устойчивость, а присутствие наночастиц серебра обуславливает обеззараживающие действие зараженных стоков. При этом способ становится менее энергоемким, поскольку обжиг осуществляют при температуре 500-600°C, более низкой, чем в прототипе.

Для решения поставленной задачи в способе изготовления формованных керамических мембран, включающем измельчение смеси исходных компонентов, приготовление суспензии, ее высушивание и последующий обжиг, согласно изобретению высушенную суспензию размалывают, затем просеивают и отбирают фракцию с размером частиц не более 0,1 мм, которую подвергают формованию прессованием при давлении 1,0-3,0 т/см2, обжиг осуществляют при температуре 500-600°C, а в качестве исходных используют компоненты, при следующем соотношении, масс. %:

цеолит 20-25 1,5%-ный раствор хитозана в 1-3 2%-ной уксусной кислоте SiO2 20-25 64%-ный водный раствор Na2SiO3 40-50 концентрированный водный раствор ZrOCl2·12H2O 3-9 1%-ный раствор AgNO3 0,5-1

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают свои функциональные задачи.

Для изготовления мембран размер частиц порошковой смеси не должен превышать 0.1 мм, т.к. более крупные частицы уменьшают рабочую поверхность мембраны; чем меньше частицы, тем больше внутренняя поверхность.

Цеолит - SiO2 - 72.3%, Al2O3 - 17.10%, СаО - 3.61%, Na2O - 1.14%, K2O - 3.79%, Fe2O3 - 1.60%, MgO - 0.20%; имеет температуру плавления 450°С, поэтому при обжиге он создает между частицами порошковой смеси легкоплавкие мостики, что приводит к спеканию частиц порошка, но не вызывает их плавления. При более высоких температурах (более 600°С), компоненты смеси могут расплавляться, что приведет к хрупкости мембраны (ломкость) и снижению фильтрующей способности.

Акрило-силиконовая эмульсия - покрывает частицы минералов и является связующим звеном между ними, потом при обжиге органическая часть выделяется в виде газа и, проходя между частицами, создает равномерные во всем объеме каналы.

Оксид кремния и силикат натрия - при взаимодействии с оксихлоридом циркония образуют силикат циркония, имеющий более высокую температуру плавления, чем принятая для данного способа, и устойчив к агрессивным средам, а также приводит к образованию нейтральной среды в мембране.

Оксихлорид циркония служит для образования силикатов, придающих твердость и прочность мембране.

Нитрат серебра обладает обеззараживающим действием за счет присутствия ионов серебра.

Способ осуществляют следующим образом.

Для изготовления мембраны вначале готовят фильтрующий материал, который затем формуют и обжигают.

Для приготовления фильтрующего материала смешивают природный цеолит в количестве 20-25 масс. % и оксид кремния SiO2 в количестве 20-25 масс. %, размалывают, просеивают на сите 0.1 мм (допускается остаток на сите не более 1%), затем к просеянной смеси добавляют 1,5%-ный раствор хитозана в 2%-ной уксусной кислоте в количестве 1-3 масс. %, 1%-ный раствор AgNO3 в воде или спирте (метанол, этанол) в количестве 0,5-1 масс. %, 64%-ный водный раствор Na2SiO3 в количестве 40-50 масс. % и концентрированный водный раствор ZrOCl2·12H2O в количестве 3-9 масс. %. Далее полученную суспензию диспергируют на кавитаторе при частоте 300 Гц (герц) до однородной массы.

Полученную массу сушат при комнатной температуре воздуха, затем размалывают в порошок до размера частиц не более 0.1 мм, затем просеивают и отбирают для изготовления мембран фракцию с размером частиц не более 0.1 мм. Полученный порошок формуют в пресс-формах при давлении 1.0-3.0 т/см2 и обжигают в печи при температуре 500-600°С.

Полученные мембраны исследованы в отношении следующих технических характеристик: твердость, внутренний объем (Vps, А3) мембраны, производительность по воде.

Твердость определяли по Бринеллю (ГОСТ 9012-59. Металлы. Метод измерения твердости по Бринеллю. 1990).

Внутренний объем (Vps, А3) мембраны определяли с помощью позитронной аннигиляционной спектроскопии на приборе "ORTEC PAL System spectrometer" (Графутин В.И., Прокофьев Е.П. // Успехи физ. наук. - 2002. - Т. 172, №1. - С. 67-83).

Производительность по воде. (ГОСТ Р 50110-92. Мембраны полимерные. Метод определения производительности плоских ультрафильтрационных мембран).

Проверка обеззараживающего действия мембраны проводилась на растворах, содержащих штаммы Staphylococcus aureus АТСС 25923, Esherichia coli АТСС 25922 при концентрации микробных тел 107 м.т. в мл.

Пример 1

К смеси из 20 г природного цеолита и 20 г оксида кремния прибавляли концентрированный водный раствор ZrOCl2·12H2O, который готовили растворением 8 г ZrOCl2·12H2O в 50 мл дистиллированной воды, к полученной смеси добавляли 50 мл 1,5%-ного раствора хитозана в 2%-ной уксусной кислоте и 30 мл 1%-ного водного раствора AgNO3. Смесь перемешивали и добавляли 78 г 64%-ного водного раствора Na2SiO3. Полученную суспензию диспергировали кавитатором при частоте 300 Гц до однородной массы в течение 15 минут, затем высушивали на воздухе при комнатной температуре. Высушенную смесь размалывали на вибромельнице до порошкообразного состояния, отсеивали фракцию с размером частиц до 0.1 мм. Из полученного количества порошка изготовили мембраны при разном давлении: 1 т/см2, 2 т/см2, 3 т/см2. Для этого по 10 г порошка помещали в пресс-формы диаметром 42 мм и прессовали, затем помещали их в печь для обжига при 500°С.

На фиг. 1 представлено изображение и элементный состав поверхности одной из полученных по примеру мембран.

Полученные мембраны представляли собой диски диаметром 42 мм светло-серого цвета с небольшим количеством крупных пор и следующими показателями: твердость, внутренний объем (Vps, А3), производительность по воде.

Производительность по воде была определена для мембраны, изготовленной при давлении 2 т/см2 (мембрана 1).

Проверка обеззараживающего действия мембраны 1 проводилась на растворах, содержащих штаммы Staphylococcus aureus АТСС 25923, Esherichia coli АТСС 25922 при концентрации микробных тел 107 м.т. в мл. Результаты представлены в таблице №2.

Пример 2

К смеси из 25 г природного цеолита и 25 г оксида кремния прибавляли концентрированный водный раствор ZrOCl2·12H2O, который готовили растворением 4 г ZrOCl2·12H2O в 50 мл дистиллированной воды, к полученной смеси добавляли 50 мл 1,5%-ного раствора хитозана в 2%-ной уксусной кислоте и 15 мл 1%-ного водного раствора AgNO3. Смесь перемешивали и добавляли 69 г 64%-ного водного раствора Na2SiO3. Полученную суспензию диспергировали кавитатором при частоте 300 Гц до однородной массы в течение 15 минут, затем высушивали на воздухе при комнатной температуре. Высушенную смесь размалывали на вибромельнице до порошкообразного состояния, отсеивали фракцию с размером частиц до 0.1 мм. Из полученного порошка изготовили мембрану при давлении 2 т/см2. Для этого 10 г порошка помещали в пресс-форму диаметром 42 мм и прессовали, затем обжигали в печи при 500°С.

Полученная мембрана 2 представляла собой диск диаметром 42 мм и следующими показателями: твердость, внутренний объем (Vps, А3), производительность по воде.

Проверка обеззараживающего действия мембраны 2 проводилась на растворах, содержащих штаммы Staphylococcus aureus АТСС 25923, Esherichia coli АТСС 25922 при концентрации микробных тел 107 м.т. в мл. Результаты представлены в таблице 4.

Данные электронной микроскопии и производительности по воде позволяют сделать вывод о том, что мембрана обладает плотной структурой и может быть использована в качестве нанофильтрационной мембраны при очистке водных молекулярных растворов от достаточно больших молекулярных веществ. Главным преимуществом данных мембран является их высокая устойчивость к кислотам, температуре и они могут храниться сколь угодно долго. Также возможна регенерация мембран после обеззараживания, просушивания и прокаливания при температуре 400-500°C.

Уменьшение количества нитрата серебра в составе мембраны способствует ослаблению обеззараживающего эффекта. При увеличении количества оксихлорида циркония и уменьшении количества цеолита в составе мембраны возрастает твердость и уменьшается внутренний объем, что приводит к значительному снижению производительности и резкому уменьшению размеров пор мембраны.

Похожие патенты RU2592529C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ФОРМОВАННЫХ КЕРАМИЧЕСКИХ МЕМБРАН 2014
  • Каткова Светлана Алексеевна
  • Хальченко Ирина Григорьевна
  • Жамская Нелли Николаевна
  • Шапкин Николай Павлович
  • Шкуратов Антон Леонидович
  • Труханенко Анна Витальевна
RU2561638C1
Способ получения формованной керамической мембраны 2018
  • Шапкин Николай Павлович
  • Папынов Евгений Константинович
  • Хальченко Ирина Григорьевна
  • Шкуратов Антон Леонидович
  • Шичалин Олег Олегович
RU2682634C1
Способ изготовления керамических расклинивателей нефтяных скважин 2003
  • Шмотьев Сергей Федорович
  • Плинер Сергей Юрьевич
RU2235703C9
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОЛИМЕРСОДЕРЖАЩИХ ПОКРЫТИЙ НА МЕТАЛЛАХ И СПЛАВАХ 2014
  • Гнеденков Сергей Васильевич
  • Синебрюхов Сергей Леонидович
  • Машталяр Дмитрий Валерьевич
  • Имшинецкий Игорь Михайлович
  • Цветников Александр Константинович
  • Бузник Вячеслав Михайлович
  • Сергиенко Валентин Иванович
RU2569259C1
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРОЭЛЕМЕНТА 1993
  • Горобец Б.Р.
  • Покровский Д.Д.
  • Павлюченков В.О.
  • Левинская М.Х.
  • Симкина Т.В.
  • Поляков А.В.
  • Першикова О.И.
RU2031891C1
Способ получения модифицированного биопокрытия с микрочастицами трикальцийфосфата и/или волластонита на имплантате из магниевого сплава 2021
  • Шаркеев Юрий Петрович
  • Седельникова Мария Борисовна
  • Чебодаева Валентина Вадимовна
  • Бакина Ольга Владимировна
  • Угодчикова Анна Владимировна
  • Толкачева Татьяна Викторовна
RU2763091C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИЙСИЛИКАТНОГО ПРОППАНТА 2023
  • Конов Магомет Абубекирович
  • Хамизов Руслан Хажсетович
  • Бавижев Мухамед Данильевич
RU2814893C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНОГО КЕРАМИЧЕСКОГО ТЕПЛОИЗОЛЯЦИОННОГО И ТЕПЛОИЗОЛЯЦИОННО-КОНСТРУКЦИОННОГО МАТЕРИАЛА "КОНПАЗИТ" 2011
  • Кондратенко Виктор Александрович
  • Павленко Александр Васильевич
RU2473516C1
КЕРАМИЧЕСКОЕ ФОРМОВАННОЕ ИЗДЕЛИЕ С ФОТОКАТАЛИТИЧЕСКИМ ПОКРЫТИЕМ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Тирауф Аксель
  • Бауер Фридерике
  • Гаст Эдуард
RU2318781C2
СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ОТ ЭНДОТОКСИНОВ 2013
  • Давыдова Виктория Николаевна
  • Шапкин Николай Павлович
  • Ермак Ирина Михайловна
  • Шкуратов Антон Леонидович
  • Разов Валерий Иванович
RU2529221C1

Иллюстрации к изобретению RU 2 592 529 C2

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ФОРМОВАННОЙ КОМПОЗИТНОЙ МЕМБРАНЫ

Изобретение относится к технологии получения композитной формованной мембраны на основе неорганических природных силикатов и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности, где существует необходимость в очистке растворов, требующих обеззараживания. Способ включает измельчение смеси исходных компонентов, приготовление суспензии, ее высушивание и последующий обжиг. Высушенную суспензию размалывают, затем просеивают и отбирают фракцию с размером частиц не более 0.1 мм, которую подвергают формованию прессованием при давлении 1.0-3.0 т/см2, обжиг осуществляют при температуре 500-600°C, а в качестве исходных используют компоненты, мас. %: цеолит 20-25, 1,5%-ный раствор хитозана в 2%-ной уксусной кислоте 1-3, SiO2 20-25, 64%-ный водный раствор Na2SiO3 40-50, концентрированный водный раствор ZrOCl2·12Н2О 3-9, 1%-ный раствор AgNO3 0,5-1. Технический результат: создание энергосберегающего способа изготовления формованных керамических мембран с повышенной механической прочностью, обладающих обеззараживающим действием при очистке зараженных стоков. 1 ил., 4 табл., 4 пр.

Формула изобретения RU 2 592 529 C2

Способ изготовления формованных керамических мембран, включающий измельчение смеси исходных компонентов, приготовление суспензии, ее высушивание и последующий обжиг, отличающийся тем, что высушенную суспензию размалывают, затем просеивают и отбирают фракцию с размером частиц не более 0.1 мм, которую подвергают формованию прессованием при давлении 1.0-3.0 т/см2, обжиг осуществляют при температуре 500-600°С, а в качестве исходных используют компоненты, при следующем соотношении, масс. %:
цеолит 20-25 1,5%-ный раствор хитозана в 1-3 2%-ной уксусной кислоте SiO2 20-25 64%-ный водный раствор Na2SiO3 40-50 концентрированный водный раствор ZrOCl2·12H2O 3-9 1%-ный раствор AgNO3 0,5-1

Документы, цитированные в отчете о поиске Патент 2016 года RU2592529C2

СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2008
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
RU2375101C1
КЕРАМИЧЕСКИЙ МЕМБРАННЫЙ ФИЛЬТР АСИММЕТРИЧНОЙ СТРУКТУРЫ, СПОСОБ И МАТЕРИАЛ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2001
  • Логинов А.Ю.
  • Иванов А.А.
  • Костяков В.В.
  • Литуненко Б.Т.
  • Пушкин В.Т.
RU2190461C1
CN 103011893 A, 03.04.2013.

RU 2 592 529 C2

Авторы

Шапкин Николай Павлович

Шкуратов Антон Леонидович

Хальченко Ирина Григорьевна

Разов Валерий Иванович

Скурихина Юлия Евгеньевна

Туркутюков Вячеслав Борисович

Даты

2016-07-20Публикация

2014-12-19Подача