ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ 3D-ПЕЧАТИ Российский патент 2016 года по МПК C09C1/44 C08K3/04 B29C67/00 

Описание патента на изобретение RU2597675C1

Изобретение относится к области получения электропроводящих полимерных композиций, используемых для изготовления токопроводящих материалов, предназначенных для 3D-печати.

Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы.

Известны электропроводящие полимерные композиции на основе акрилонитрил-бутадиен-стирола и технического углерода марок П803, П805Э и Printex ХЕ-2В, применяемые для изготовления трехмерных объектов методом 3D-печати. [Simon J. Leigh, Robert J. Bradley, Christopher P. Purssell and others. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLOSONE, November 2012. - V. 7 - №11.]

Недостатком указанной полимерной композиции является низкая электропроводность и текучесть вследствие использования наполненного акрилонитрил-бутадиен-стирола.

Наиболее близкими к предлагаемой электропроводящей композиции являются электропроводящие композиции [Абдуллин М.И., Басыров А.А., Гадеев А.С. и др. Сравнение электропроводности токопроводящих полимерных композиций, наполненных техническим углеродом и углеродными волокнами. Журнал научных публикаций аспирантов и докторантов, 2014, №8 (98), с. 95-99], содержащие полипропилен и полиэтилен, стирол-бутадиеновый сополимер, технические углероды марок П805Э, Printex ХЕ-2В и УВИС АК-П, в следующих вариантах:

1. Полиэтилен марки 2287 с техническим углеродом (ТУ) марки П805Э со степенью наполнения 40-70%;

2. Полипропилен марки 01270 с ТУ марки УВИС АК-П со степенью наполнения 10-70%;

3. Полиэтилен марки 2287 с ТУ марки Printex XE-2B со степенью наполнения 5-20%;

4. Полипропилен марки 01270 с ТУ марки Printex XE-2B со степенью наполнения 5-20%;

5. Стирол-бутадиеновый сополимер марки LG-501 с ТУ марки Printex XE-2B со степенью наполнения 10-25%.

Недостатком данных электропроводящих композиций является низкий показатель текучести расплавов полимерных композиций (менее 2,5 г/10 мин), что не позволяет осуществлять изготовление на их основе трехмерных объектов методом 3D-печати.

Техническим результатом изобретения является увеличение электропроводности и показателя текучести расплава для полимерных композиций, предназначенных для 3D-печати.

Указанный технический результат достигается тем, что полимерная композиция дополнительно содержит поливинилацетат в количестве от 30 до 97 масс. %. Электропроводящая полимерная композиция содержит компоненты в следующем соотношении, масс. %.:

технический углерод - 3-70;

поливинилацетат - 30-97.

В качестве технического углерода могут использоваться технические углероды марок ТУ П803, ТУ П805Э, Printex ХЕ-2В или углеродные волокна марки УВИС АК-П.

В результате введения в полимерную композицию поливинилацетата, существенно увеличивается электропроводность и показатель текучести расплава электропроводящих полимерных композиций.

Полимерную композицию получают следующим образом.

В реактор загружают 3-70 масс. %. технического углерода, 30-97 масс. %. поливинилацетата. Композиции смешивают в металлическом цилиндре в течение 12 мин при скорости перемешивания 440 мин-1.

Получаемые порошкообразные композиции помещают в лабораторный одношнековый экструдер при температуре материального цилиндра 190°C, с последующим дроблением экструдата.

Измерение удельной электропроводности приготовленных таким образом полимерных композиций проводят на цилиндрических образцах длиной около 20 мм и диаметром 4 мм контактным способом. Измерение показателя текучести расплава (ПТР) полимерных композиций проводят на экструзионном пластографе ИИРТ-2М. Значение электропроводности и ПТР полимерных композиций определяют по ГОСТ 11645-73.

Данное изобретение иллюстрируется следующими примерами.

Пример 1

В реактор загружают 90 масс. %. поливинилацетата, 10 масс. %. гранулированного технического углерода. Композиции смешивают в металлическом цилиндре в течение 12 мин при скорости перемешивания 440 мин-1. Получаемые порошкообразные композиции гранулируют на лабораторном одношнековом экструдере при температуре материального цилиндра 190°C с последующим дроблением экструдата. Электропроводность полученной полимерной композиции составляет 5×10-7 (Ом × мм2/см)-1, показатель текучести расплава 11,89 г/10 мин.

Пример 2

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 80, технический углерод марки ТУ П803 - 20. Электропроводность полученной полимерной композиции составляет 3,9×10-5 (Ом × мм2/см)-1, показатель текучести расплава 10,57 г/10 мин.

Пример 3

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 70, технический углерод марки ТУ П803 - 30. Электропроводность полученной полимерной композиции составляет 5,3×10-3 (Ом × мм2/см)-1, показатель текучести расплава 5,47 г/10 мин.

Пример 4

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 60, технический углерод марки ТУ П803 - 40. Электропроводность полученной полимерной композиции составляет 1,6×10-1 (Ом × мм2/см)-1, показатель текучести расплава 2,86 г/10 мин.

Пример 5

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 50, технический углерод марки ТУ П803 - 50. Электропроводность полученной полимерной композиции составляет 1,7×10-1 (Ом × мм2/см)-1, показатель текучести расплава 2,30 г/10 мин.

Пример 6

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 60, технический углерод марки ТУ П805Э - 40. Электропроводность полученной полимерной композиции составляет 5×10-7 (Ом × мм2/см)-1, показатель текучести расплава 2,31 г/10 мин.

Пример 7

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 50, технический углерод марки ТУ П805Э - 50. Электропроводность полученной полимерной композиции составляет 5×10-7 (Ом × мм2/см)-1, показатель текучести расплава 1,74 г/10 мин.

Пример 8

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 40, технический углерод марки ТУ П805Э - 60. Электропроводность полученной полимерной композиции составляет 2,8×10-5 (Ом × мм2/см)-1, показатель текучести расплава 1,03 г/10 мин.

Пример 9

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 35, технический углерод марки ТУ П805Э - 65. Электропроводность полученной полимерной композиции составляет 5,9×10-4 (Ом × мм2/см)-1, показатель текучести расплава 0,73 г/10 мин.

Пример 10

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 30, технический углерод марки ТУ П805Э - 70. Электропроводность полученной полимерной композиции составляет 4,3×10-1 (Ом × мм2/см)-1, показатель текучести расплава 0,22 г/10 мин.

Пример 11

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 95, углеродные волокна марки УВИС АК-П - 5. Электропроводность полученной полимерной композиции составляет 2,00×10-6 (Ом × мм2/см)-1, показатель текучести расплава 7,80 г/10 мин.

Пример 12

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 90, углеродные волокна марки УВИС АК-П - 10. Электропроводность полученной полимерной композиции составляет 8,3×10-6 (Ом × мм2/см)-1, показатель текучести расплава 3,70 г/10 мин.

Пример 13

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 85, углеродные волокна марки УВИС АК-П - 15. Электропроводность полученной полимерной композиции составляет 3,8×10-5 (Ом × мм2/см)-1, показатель текучести расплава 1,00 г/10 мин.

Пример 14

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 80, углеродные волокна марки УВИС АК-П - 20. Электропроводность полученной полимерной композиции составляет 1,8×10-4 (Ом × мм2/см)-1, показатель текучести расплава 0,01 г/10 мин.

Пример 15

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 70, углеродные волокна марки УВИС АК-П - 30. Электропроводность полученной полимерной композиции составляет 1,5×10-3 (Ом × мм2/см)-1, показатель текучести расплава менее 0,01 г/10 мин.

Пример 16

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 60, углеродные волокна марки УВИС АК-П - 40. Электропроводность полученной полимерной композиции составляет 2,00×10-6 (Ом × мм2/см)-1, показатель текучести расплава менее 0,01 г/10 мин.

Пример 17

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 50, углеродные волокна марки УВИС АК-П - 50. Электропроводность полученной полимерной композиции составляет 7,8×10-4 (Ом × мм2/см)-1, показатель текучести расплава менее 0,01 г/10 мин.

Пример 18

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 97, технический углерод марки Printex ХЕ-2В - 3. Электропроводность полученной полимерной композиции составляет 4×10-7 (Ом × мм2/см)-1, показатель текучести расплава 8,86 г/10 мин.

Пример 19

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 95, технический углерод марки Printex ХЕ-2В - 5. Электропроводность полученной полимерной композиции составляет 5×10-7 (Ом × мм2/см)-1, показатель текучести расплава 8,70 г/10 мин.

Пример 20

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 90, технический углерод марки Printex ХЕ-2В - 10. Электропроводность полученной полимерной композиции составляет 5,3×10-3 (Ом × мм2/см)-1, показатель текучести расплава 4,30 г/10 мин.

Пример 21

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 85, технический углерод марки Printex ХЕ-2В - 15. Электропроводность полученной полимерной композиции составляет 1,6×10-1 (Ом × мм2/см)-1, показатель текучести расплава 1,60 г/10 мин.

Пример 22

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 80, технический углерод марки Printex ХЕ-2В - 20. Электропроводность полученной полимерной композиции составляет 1,7×10-1 (Ом × мм2/см)-1, показатель текучести расплава 0,60 г/10 мин.

Пример 23

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 29, технический углерод марки П805Э - 71. Электропроводность полученной полимерной композиции составляет 4,2×10-1 (Ом × мм2/см)-1, расплав полимерной композиции не проявляет текучести.

Пример 24

В условиях примера 1 при следующей загрузке компонентов, масс. %: поливинилацетат - 98, технический углерод марки Printex ХЕ-2В - 2. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 10,4 г/10 мин.

Из данных табл. 1 следует, что электропроводящие полимерные композиции, получаемые с использованием поливинилацетата, обеспечивают по сравнению с прототипом существенно более высокую электропроводность и показатель текучести расплава.

Таким образом, дополнительное введение поливинилацетата позволяет увеличить электропроводность и показатель текучести расплава полимерных композиций.

Похожие патенты RU2597675C1

название год авторы номер документа
Электропроводящая полимерная композиция для 3D-печати 2015
  • Абдуллин Марат Ибрагимович
  • Глазырин Андрей Борисович
  • Колтаев Николай Владимирович
  • Нагаев Рустам Рифович
  • Кокшарова Юлия Александровна
  • Гадеев Азат Салаватович
RU2611880C2
Электропроводящая термопластичная эластомерная композиция 2018
  • Волосов Игорь Вячеславович
  • Корецкий Игорь Аркадьевич
  • Локтионова Мария Валерьевна
  • Горковенко Денис Александрович
RU2690806C1
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Кокшарова Юлия Александровна
  • Колтаев Николай Владимирович
  • Гадеев Азат Салаватович
RU2641134C1
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Николаев Алексей Валерьевич
  • Кокшарова Юлия Александровна
RU2641921C2
Электропроводящие металлонаполненные полимерные композиции для 3D-печати 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Николаев Алексей Валерьевич
  • Кокшарова Юлия Александровна
  • Нагаев Рустам Рифович
RU2620435C1
Полимерные композиции, содержащие нанотрубки 2016
  • Мышлявцев Александр Владимирович
  • Шалай Виктор Владимирович
  • Акименко Сергей Сергеевич
  • Митряева Наталья Сергеевна
RU2669090C2
НАНОМОДИФИЦИРОВАННАЯ ЭЛЕКТРОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ 2018
  • Ткачев Алексей Григорьевич
  • Меметов Нариман Рустемович
  • Ягубов Виктор Сахибович
  • Столяров Роман Александрович
  • Щегольков Александр Викторович
RU2688573C1
ЭЛЕКТРОПРОВОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИПРОПИЛЕНА И ГЛОБУЛЯРНОГО УГЛЕРОДНОГО НАНОНАПОЛНИТЕЛЯ 2008
  • Микитаев Абдулах Касбулатович
  • Галицейский Кирилл Борисович
  • Данилова-Волковская Галина Михайловна
  • Чуков Николай Александрович
  • Молоканов Георгий Олегович
RU2491302C2
Способ получения электропроводящей полимерной композиции 1982
  • Павлий Василий Григорьевич
  • Заикин Александр Евгеньевич
  • Кузнецов Евгений Васильевич
  • Зайцев Александр Иванович
  • Вальц Вальтер Эдуардович
  • Липатов Юрий Сергеевич
  • Лебедев Евгений Викторович
  • Валетдинов Ренат Кадырович
SU1113391A1
Электропроводящая полимерная композиция с низким удельным объёмным сопротивлением 2017
  • Бузлаев Анатолий Васильевич
  • Глушкин Сергей Владимирович
RU2664873C1

Реферат патента 2016 года ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ 3D-ПЕЧАТИ

Изобретение относится к области трехмерной печати и касается электропроводящей полимерной композиции для 3D-печати. Композиция состоит из полимерной матрицы и углеродного наполнителя. В качестве полимерной матрицы используется поливинилацетат, а в качестве углеродного наполнителя используется технический углерод при следующем соотношении массовых частей: поливинилацетат - 30-97, технический углерод - 3-70. Технический результат заключается в увеличении электропроводности и показателя текучести расплава. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 597 675 C1

1. Электропроводящая полимерная композиция для 3D-печати, состоящая из полимерной матрицы и углеродного наполнителя, отличающаяся тем, что в качестве полимерной матрицы используется поливинилацетат, в качестве углеродного наполнителя используется технический углерод при следующем соотношении массовых частей:
поливинилацетат - 30-97;
технический углерод - 3-70.

2. Электропроводящая композиция по п. 1, где в качестве технического углерода используются технические углероды марок ТУ П803, ТУ П805Э, Printex ХЕ-2В или углеродные волокна марки УВИС АК-П.

Документы, цитированные в отчете о поиске Патент 2016 года RU2597675C1

Абдуллин М.И
и др
"Электропроводности полиолефинов, наполненных техническим углеродом и углеродными волокнами", МЕЖДУНАРОДНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЖУРНАЛ, No 4-2 (23), 2014 г., стр.89-92
CN 103980705 A, 13.08.2014
WO 2010075395 A2, 01.07.2010
US 2005197431 A1, 08.09.2005.

RU 2 597 675 C1

Авторы

Абдуллин Марат Ибрагимович

Басыров Азамат Айратович

Колтаев Николай Владимирович

Нагаев Рустам Рифович

Николаев Сергей Николаевич

Кокшарова Юлия Александровна

Гадеев Азат Салаватович

Даты

2016-09-20Публикация

2015-04-20Подача