Электропроводящие металлонаполненные полимерные композиции для 3D-печати (варианты)
Изобретение относится к области получения электропроводящих полимерных композиций, используемых для изготовления токопроводящих материалов, предназначенных для 3D-печати.
Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы.
Известны электропроводящие полимерные композиции на основе меди и термопластов или эпоксидных смол, применяемые для изготовления электронных объектов [Conductive polymer composites. Patent US 20080272344 A1, №12/077, 812].
Недостатком указанной полимерной композиции является низкая электропроводность и текучесть вследствие использования наполненного полимера.
Наиболее близкими к предлагаемой электропроводящей композиции являются электропроводящие композиции [Абдуллин М.И., Басыров А.А., Николаев А.В. Металлополимерные композиции для 3D-печати // Universum: Химия и биология: электрон. научн. журн. 2015. №11 (18)]. на основе поливинилацетата марки М10 и металлического наполнителя (свинец марки ПС, никель марки А-2, медь марки ПМУ, алюминий марки ПАД-4), следующего состава, мас. %:
1. Поливинилацетат марки М10 - свинец марки ПС со степенью наполнения 0-50%;
2. Поливинилацетат марки М10 - никель марки А-2 со степенью наполнения 0-70%
3. Поливинилацетат марки М10 - медь марки ПМУ со степенью наполнения 0-70%;
4. Поливинилацетат марки М10 - алюминий марки ПАД-4 со степенью наполнения 0-70%.
Недостатком данных электропроводящих композиций является низкая электропроводность (менее 1⋅10-4(Ом×мм2/см)-1), что не позволяет осуществлять изготовление на их основе токопроводящих трехмерных объектов методом 3D-печати.
Техническим результатом изобретения является получение полимерных композиций с повышенной электропроводностью и технологичностью, предназначенных для 3D-печати.
Указанный технический результат достигается тем, что в качестве полимерной основы электропроводящей композиции используется синдиотактический 1,2-полибутадиен (1,2-СПБ), в качестве металлического наполнителя токопроводящие порошки: ПОС-63, свинца, алюминия, меди.
Токопроводящий порошок ПОС-63 представляет собой оловянно-свинцовый сплав. Состав: олово - 63%; свинец - 27% (ТУ 48-13-39-89). Использование в составе электропроводящей композиции 1,2-СПБ позволяет существенно увеличить электропроводность и показатель текучести расплава электропроводящих полимерных композиций по сравнению с прототипом.
Электропроводящую полимерную композицию получают следующим образом.
В реактор загружают 20-60 мас. % металлического наполнителя, 40-80 мас. % 1,2-СПБ. Компоненты смешивают в металлическом смесителе, снабженном механической мешалкой, в течение 12 мин при скорости перемешивания 440 мин-1.
Порошкообразную получаемую композицию загружают в лабораторный одношнековый экструдер (D/L=15 см, глубина витка 16,5 мм, ширина гребня 20 мм) и получают экструдат при температуре материального цилиндра 150°С и скорости вращения шнека 30 мин-1.
Измерение удельной электропроводности приготовленных таким образом полимерных композиций проводят на цилиндрических образцах длиной около 20 мм и диаметром 4 мм контактным способом. Измерение показателя текучести расплава полимерных композиций проводят на экструзионном пластографе ИИРТ-АМ. Значение электропроводности и ПТР полимерных композиций определяют по ГОСТ 11645-73.
Данное изобретение иллюстрируется следующими примерами.
Пример 1.
В смеситель загружают 80 мас. % 1,2-СПБ; 20 мас. % ПОС-63. Композицию смешивают в смесителе в течение 12 мин при скорости перемешивания 440 мин-1. Полученную порошкообразную композицию гранулируют на лабораторном одношнековом экструдере при температуре 150°С. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 15,2 г/10 мин.
Пример 2.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 70; ПОС-63 - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 9,1 г/10 мин.
Пример 3.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 60; ПОС-63 - 40. Электропроводность полимерной композиции составляет 1×10-4 (Ом×мм2/см)-1, показатель текучести расплава 3,8 г/10 мин.
Пример 4.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 50; ПОС-63 - 50. Электропроводность полимерной композиции составляет 1×10-3 (Ом×мм2/см)-1, показатель текучести расплава 1,6 г/10 мин.
Пример 5.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 40; ПОС-63 - 60. Электропроводность полимерной композиции составляет 3×10-3 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Пример 6.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 80; свинец - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 12,2 г/10 мин.
Пример 7.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 70; свинец - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 8,0 г/10 мин.
Пример 8.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 60; свинец - 40. Электропроводность полимерной композиции составляет 1×10-4 (Ом×мм2/см)-1, показатель текучести расплава 2,0 г/10 мин.
Пример 9.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 50; свинец - 50. Электропроводность полимерной композиции составляет 1⋅10-3 (Ом×мм2/см)-1, показатель текучести расплава 0,7 г/10 мин.
Пример 10.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 40, свинец - 60. Электропроводность полимерной композиции составляет 8×10-3 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Пример 11.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 80; медь - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 14,7 г/10 мин.
Пример 12.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 70; медь - 30. Электропроводность полимерной композиции составляет 1×10-4 (Ом×мм2/см)-1, показатель текучести расплава 9,9 г/10 мин.
Пример 13.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 60; медь - 40. Электропроводность полимерной композиции составляет 1×10-3 (Ом×мм2/см)-1, показатель текучести расплава 2,3 г/10 мин.
Пример 14.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 50; медь - 50. Электропроводность полимерной композиции составляет 1,5×10-2 (Ом×мм2/см)-1 показатель текучести расплава 0,7 г/10 мин.
Пример 15.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 40; медь - 60. Электропроводность полимерной композиции составляет 6,4×10-2 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Пример 16.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 80; алюминий - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 16,0 г/10 мин.
Пример 17.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 70; алюминий - 30. Электропроводность полимерной композиции составляет 1×10-4 (Ом×мм2/см)-1, показатель текучести расплава 7,1 г/10 мин.
Пример 18.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 60; алюминий - 40. Электропроводность полимерной композиции составляет 1×10-3 (Ом×мм2/см)-1, показатель текучести расплава 1,5 г/10 мин.
Пример 19.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 50; алюминий - 50. Электропроводность полимерной композиции составляет 7×10-3 (Ом×мм2/см)-1, показатель текучести расплава 0,5 г/10 мин.
Пример 20.
В условиях примера 1 при следующей загрузке компонентов, мас. %: 1,2-СПБ - 40; алюминий - 60. Электропроводность полимерной композиции составляет 3,4×10-2 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Таким образом, использование в качестве полимерной основы 1,2-СПБ позволяет получить полимерные композиции с повышенной электропроводностью и технологичностью, предназначенные для изготовления трехмерных объектов методом 3D-печати, который предполагает нанесение электропроводящего полимерного слоя в виде расплава.
название | год | авторы | номер документа |
---|---|---|---|
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) | 2016 |
|
RU2641134C1 |
Электропроводящие металлонаполненные полимерные композиции для 3D-печати | 2016 |
|
RU2620435C1 |
Электропроводящая полимерная композиция для 3D-печати | 2015 |
|
RU2611880C2 |
ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ 3D-ПЕЧАТИ | 2015 |
|
RU2597675C1 |
Электропроводящая термопластичная эластомерная композиция | 2018 |
|
RU2690806C1 |
Электропроводящая полимерная композиция | 2017 |
|
RU2664872C1 |
Электропроводящая полимерная композиция с низким удельным объёмным сопротивлением | 2017 |
|
RU2664873C1 |
ЭЛЕКТРОПРОВОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИПРОПИЛЕНА И ГЛОБУЛЯРНОГО УГЛЕРОДНОГО НАНОНАПОЛНИТЕЛЯ | 2008 |
|
RU2491302C2 |
Способ получения электропроводящей полимерной композиции | 1982 |
|
SU1113391A1 |
Электропроводящая композиция на основе полиолефина | 1984 |
|
SU1219610A1 |
Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы. Электропроводящая полимерная композиция содержит в качестве полимерной основы синдиотактический 1,2-полибутадиен (1,2-СПБ) в количестве 60-50 мас.%, и в качестве токопроводящего металлического наполнителя: припой марки ПОС-63 или свинец – остальное. Вариант композиции содержит в качестве полимерной основы синдиотактический 1,2-СПБ в количестве 70-50 мас.%, а в качестве токопроводящего металлического наполнителя: медь или алюминий – остальное. Техническим результатом является увеличение электропроводности и показателя текучести расплава для полимерных композиционных материалов, предназначенных для 3D-печати. 2 н.п. ф-лы, 1 табл., 20 пр.
1. Электропроводящая металлонаполненная полимерная композиция для 3D-печати, состоящая из полимерной основы, токопроводящего наполнителя, отличающаяся тем, что в качестве полимерной основы содержит синдиотактический 1,2-полибутадиен (1,2-СПБ), в качестве токопроводящего наполнителя содержит металлический наполнитель – припой марки ПОС-63 или свинец при следующем соотношении, мас. %:
2. Электропроводящая металлонаполненная полимерная композиция для 3D-печати, состоящая из полимерной основы, токопроводящего наполнителя, отличающаяся тем, в качестве полимерной основы содержит синдиотактический 1,2-полибутадиен (1,2-СПБ), в качестве токопроводящего наполнителя содержит металлический наполнитель - медь или алюминий при следующем соотношении, мас. %:
М.И.АБДУЛЛИН И ДР | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2007 |
|
RU2448832C2 |
СПОСОБ ТРЕХМЕРНОЙ ПЕЧАТИ ИЗДЕЛИЙ | 2014 |
|
RU2564604C1 |
УСТРОЙСТВО ФОРМИРОВАНИЯ ТРЕХМЕРНОГО ИЗДЕЛИЯ И СПОСОБ ФОРМИРОВАНИЯ ТРЕХМЕРНОГО ИЗДЕЛИЯ | 2006 |
|
RU2417890C2 |
WO 2008080893 A1, 10.07.2008 | |||
US 2005078158 A1, 14.04.2005 | |||
US 5882722 A, 16.03.1999. |
Авторы
Даты
2018-01-23—Публикация
2016-07-14—Подача