Изобретение относится к области получения электропроводящих полимерных композиций, используемых для изготовления токопроводящих материалов, предназначенных для 3D-печати.
Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы.
Известны электропроводящие полимерные композиции на основе меди и термопластов или эпоксидных смол, применяемые для изготовления электронных объектов [Conductive polymer composites. Patent US 20080272344 A1, №12/077812].
Недостатком указанной полимерной композиции является низкая электропроводность и текучесть вследствие использования наполненного полимера.
Известны электропроводящие композиции [Абдуллин М.И., Басыров А.А., Николаев А.В. Металлополимерные композиции для 3D-печати // Universum: Химия и биология: электрон. научн. журн. 2015. №11(18)] на основе поливинилацетата марки М10 и металлического наполнителя (свинец марки ПС, никель марки А-2, медь марки ПМУ, алюминий марки ПАД-4), следующего состава, мас.%:
1. Поливинилацетат марки M10 - свинец марки ПС со степенью наполнения 0-50%.
2. Поливинилацетат марки М10 - никель марки А-2 со степенью наполнения 0-70%.
3. Поливинилацетат марки М10 - медь марки ПМУ со степенью наполнения 0-70%.
4. Поливинилацетат марки М10 - алюминий марки ПАД-4 со степенью наполнения 0-70%.
Недостатком данных электропроводящих композиций является низкая электропроводность (менее 1⋅10-4 (Ом×мм2/см)-1), что не позволяет осуществлять изготовление на их основе токопроводящих трехмерных объектов методом 3D-печати.
Наиболее близкой к предлагаемой электропроводящей композиции является электропроводящая металонаполненная полимерная композиция для 3D-печати [CN 105001586 А, опубл. 28.10.2015], состоящая из полимерной основы токопроводящего наполнителя, в качестве полимерной основы используется сополимер акрилонитрила бутадиен стирола, а в качестве токопроводящего наполнителя - металлический наполнитель, при следующем соотношении, мас.%:
АБС - 15-30
металлический наполнитель - 20-50.
Недостатком наиболее близкого аналога является низкое содержание электропроводящего наполнителя, которое не обеспечивает равномерное электрическое сопротивление по всему объему полимерной композиции. Вследствие этого заложенные показатели электрического сопротивления характеризуются значительно большим разбросом заданных электропроводящих свойств как в одном образце, так и в серии образцов.
Техническим результатом изобретения является получение полимерных композиций с повышенной электропроводностью и технологичностью, предназначенных для 3D-печати.
Указанный технический результат достигается тем, что в качестве полимерной основы электропроводящей композиции используется сополимер акрилонитрил бутадиен стирола (АБС), в качестве токопроводящего наполнителя используется металлический наполнитель. Электропроводящая металлонаполненная полимерная композиция для 3D-печати содержит компоненты в следующем соотношении, мас.%:
АБС - 50-80
металлический наполнитель - 20-50.
В качестве металлического наполнителя может использоваться припой марки ПОС-63, свинец, медь, алюминий.
Использование в составе электропроводящей композиции АБС позволяет существенно увеличить электропроводность и показатель текучести расплава электропроводящих полимерных композиций по сравнению с прототипом.
Электропроводящую полимерную композицию получают следующим образом.
В реактор загружают 20-50 мас.% металлического наполнителя, 50-80 мас.% АБС. Компоненты смешивают в металлическом смесителе, снабженном механической мешалкой, в течение 12 мин при скорости перемешивания 440 мин-1.
Порошкообразную получаемую композицию загружают в лабораторный одношнековый экструдер (D/L=15 см, глубиной витка 16,5 мм, ширина гребня 20 мм) и получают экструдат при температуре материального цилиндра 150°С и скорости вращения шнека 30 мин-1.
Измерение удельной электропроводности приготовленных таким образом полимерных композиций проводят на цилиндрических образцах длиной около 20 мм и диаметром 4 мм контактным способом. Измерение показателя текучести расплава полимерных композиций проводят на экструзионном пластографе ИИРТ-АМ. Значение электропроводности и ПТР полимерных композиций определяют по ГОСТ 11645-73.
Данное изобретение иллюстрируется следующими примерами.
Пример 1.
В смеситель загружают 80 мас.% АБС, 20 мас.% припоя марки ПОС-63. Композицию смешивают в смесителе в течение 12 мин при скорости перемешивания 440 мин-1. Полученную порошкообразную композицию гранулируют на лабораторном одношнековом экструдере при температуре 150°С. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 3,1 г/10 мин.
Пример 2.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, припой марки ПОС-63 - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,6 г/10 мин.
Пример 3.
В условиях примера 1 при следующей загрузке компонентов мас.% АБС - 60, припой марки ПОС-63 - 40. Электропроводность полимерной композиции составляет 5⋅10-4 (Ом×мм2/см)-1, показатель текучести расплава 0,7 г/10 мин.
Пример 4.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, припой марки ПОС-63 - 50. Электропроводность полимерной композиции составляет 7⋅10-3 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Пример 5.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 80, свинец - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 2,7 г/10 мин.
Пример 6.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, свинец - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,1 г/10 мин.
Пример 7.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 60, свинец - 40. Электропроводность полимерной композиции составляет 6⋅10-2 (Ом×мм2/см)-1, показатель текучести расплава 0.2 г/10 мин.
Пример 8.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, свинец - 50. Электропроводность полимерной композиции составляет 7⋅10-3 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Пример 9.
В условиях примера 1 при следующей загрузке компонентов мас.% АБС - 80, медь - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 3,1 г/10 мин.
Пример 10.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, медь - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,45 г/10 мин.
Пример 11.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 60, медь - 40. Электропроводность полимерной композиции составляет 7⋅10-2 (Ом×мм2/см)-1, показатель текучести расплава 0,5 г/10 мин.
Пример 12.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, медь - 50. Электропроводность полимерной композиции составляет 3,8⋅10-2 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Пример 13.
В условиях примера 1 при следующей загрузке компонентов мас.% АБС - 80, алюминий - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 2,78 г/10 мин.
Пример 14.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, алюминий - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,3 г/10 мин.
Пример 15.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 60, алюминий - 40. Электропроводность полимерной композиции составляет 6,7⋅10-2 (Ом×мм2/см)-1, показатель текучести расплава 0,3 г/10 мин.
Пример 16.
В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, алюминий - 50. Электропроводность полимерной композиции составляет 1,7⋅10-2 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.
Таким образом, использование в качестве полимерной основы АБС позволяет получить полимерные композиции с повышенной электропроводностью и технологичностью, предназначенные для изготовления трехмерных объектов методом 3D-печати, который предполагает нанесение электропроводящего полимерного слоя в виде расплава.
название | год | авторы | номер документа |
---|---|---|---|
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) | 2016 |
|
RU2641921C2 |
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) | 2016 |
|
RU2641134C1 |
Электропроводящая полимерная композиция для 3D-печати | 2015 |
|
RU2611880C2 |
ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ 3D-ПЕЧАТИ | 2015 |
|
RU2597675C1 |
Электропроводящая термопластичная эластомерная композиция | 2018 |
|
RU2690806C1 |
Электропроводящая полимерная композиция | 2017 |
|
RU2664872C1 |
СПОСОБ ФОРМИРОВАНИЯ ЭЛЕКТРОПРОВОДЯЩИХ ДОРОЖЕК НА ПОДЛОЖКЕ | 2011 |
|
RU2468549C1 |
ЭЛЕКТРОПРОВОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИПРОПИЛЕНА И ГЛОБУЛЯРНОГО УГЛЕРОДНОГО НАНОНАПОЛНИТЕЛЯ | 2008 |
|
RU2491302C2 |
Электропроводящая полимерная композиция с низким удельным объёмным сопротивлением | 2017 |
|
RU2664873C1 |
ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ | 1992 |
|
RU2016424C1 |
Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы. Полимерная композиция содержит в качестве полимерной основы сополимер акрилонитрила бутадиен стирола (АБС) в количестве от 50 до 80 мас.%; в качестве токопроводящего металлического наполнителя: припой марки ПОС-63, свинец, медь и алюминий. Техническим результатом изобретения является увеличение электропроводности и показателя текучести расплава для полимерных композиционных материалов, предназначенных для 3D-печати. 1 табл.
Электропроводящая металлонаполненная полимерная композиция для 3D-печати, состоящая из полимерной основы, токопроводящего наполнителя, отличающаяся тем, что в качестве полимерной основы используется сополимер акрилонитрила бутадиен стирола, в качестве токопроводящего наполнителя используется металлический наполнитель при следующем соотношении компонентов, мас.%:
при этом в качестве металлического наполнителя используются припой марки ПОС-63, свинец, медь и алюминий.
CN 105001586 A, 28.10.2015 | |||
US 4830779 A, 16.05.1989 | |||
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ, ИМЕЮЩИХ ЭЛЕКТРОПРОВОДЯЩЕЕ ПОКРЫТИЕ | 2006 |
|
RU2402385C2 |
Электропроводящий клей | 1982 |
|
SU1052532A1 |
Авторы
Даты
2017-05-25—Публикация
2016-07-14—Подача