Электропроводящие металлонаполненные полимерные композиции для 3D-печати Российский патент 2017 года по МПК C08K3/08 C08C19/42 

Описание патента на изобретение RU2620435C1

Изобретение относится к области получения электропроводящих полимерных композиций, используемых для изготовления токопроводящих материалов, предназначенных для 3D-печати.

Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы.

Известны электропроводящие полимерные композиции на основе меди и термопластов или эпоксидных смол, применяемые для изготовления электронных объектов [Conductive polymer composites. Patent US 20080272344 A1, №12/077812].

Недостатком указанной полимерной композиции является низкая электропроводность и текучесть вследствие использования наполненного полимера.

Известны электропроводящие композиции [Абдуллин М.И., Басыров А.А., Николаев А.В. Металлополимерные композиции для 3D-печати // Universum: Химия и биология: электрон. научн. журн. 2015. №11(18)] на основе поливинилацетата марки М10 и металлического наполнителя (свинец марки ПС, никель марки А-2, медь марки ПМУ, алюминий марки ПАД-4), следующего состава, мас.%:

1. Поливинилацетат марки M10 - свинец марки ПС со степенью наполнения 0-50%.

2. Поливинилацетат марки М10 - никель марки А-2 со степенью наполнения 0-70%.

3. Поливинилацетат марки М10 - медь марки ПМУ со степенью наполнения 0-70%.

4. Поливинилацетат марки М10 - алюминий марки ПАД-4 со степенью наполнения 0-70%.

Недостатком данных электропроводящих композиций является низкая электропроводность (менее 1⋅10-4 (Ом×мм2/см)-1), что не позволяет осуществлять изготовление на их основе токопроводящих трехмерных объектов методом 3D-печати.

Наиболее близкой к предлагаемой электропроводящей композиции является электропроводящая металонаполненная полимерная композиция для 3D-печати [CN 105001586 А, опубл. 28.10.2015], состоящая из полимерной основы токопроводящего наполнителя, в качестве полимерной основы используется сополимер акрилонитрила бутадиен стирола, а в качестве токопроводящего наполнителя - металлический наполнитель, при следующем соотношении, мас.%:

АБС - 15-30

металлический наполнитель - 20-50.

Недостатком наиболее близкого аналога является низкое содержание электропроводящего наполнителя, которое не обеспечивает равномерное электрическое сопротивление по всему объему полимерной композиции. Вследствие этого заложенные показатели электрического сопротивления характеризуются значительно большим разбросом заданных электропроводящих свойств как в одном образце, так и в серии образцов.

Техническим результатом изобретения является получение полимерных композиций с повышенной электропроводностью и технологичностью, предназначенных для 3D-печати.

Указанный технический результат достигается тем, что в качестве полимерной основы электропроводящей композиции используется сополимер акрилонитрил бутадиен стирола (АБС), в качестве токопроводящего наполнителя используется металлический наполнитель. Электропроводящая металлонаполненная полимерная композиция для 3D-печати содержит компоненты в следующем соотношении, мас.%:

АБС - 50-80

металлический наполнитель - 20-50.

В качестве металлического наполнителя может использоваться припой марки ПОС-63, свинец, медь, алюминий.

Использование в составе электропроводящей композиции АБС позволяет существенно увеличить электропроводность и показатель текучести расплава электропроводящих полимерных композиций по сравнению с прототипом.

Электропроводящую полимерную композицию получают следующим образом.

В реактор загружают 20-50 мас.% металлического наполнителя, 50-80 мас.% АБС. Компоненты смешивают в металлическом смесителе, снабженном механической мешалкой, в течение 12 мин при скорости перемешивания 440 мин-1.

Порошкообразную получаемую композицию загружают в лабораторный одношнековый экструдер (D/L=15 см, глубиной витка 16,5 мм, ширина гребня 20 мм) и получают экструдат при температуре материального цилиндра 150°С и скорости вращения шнека 30 мин-1.

Измерение удельной электропроводности приготовленных таким образом полимерных композиций проводят на цилиндрических образцах длиной около 20 мм и диаметром 4 мм контактным способом. Измерение показателя текучести расплава полимерных композиций проводят на экструзионном пластографе ИИРТ-АМ. Значение электропроводности и ПТР полимерных композиций определяют по ГОСТ 11645-73.

Данное изобретение иллюстрируется следующими примерами.

Пример 1.

В смеситель загружают 80 мас.% АБС, 20 мас.% припоя марки ПОС-63. Композицию смешивают в смесителе в течение 12 мин при скорости перемешивания 440 мин-1. Полученную порошкообразную композицию гранулируют на лабораторном одношнековом экструдере при температуре 150°С. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 3,1 г/10 мин.

Пример 2.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, припой марки ПОС-63 - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,6 г/10 мин.

Пример 3.

В условиях примера 1 при следующей загрузке компонентов мас.% АБС - 60, припой марки ПОС-63 - 40. Электропроводность полимерной композиции составляет 5⋅10-4 (Ом×мм2/см)-1, показатель текучести расплава 0,7 г/10 мин.

Пример 4.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, припой марки ПОС-63 - 50. Электропроводность полимерной композиции составляет 7⋅10-3 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.

Пример 5.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 80, свинец - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 2,7 г/10 мин.

Пример 6.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, свинец - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,1 г/10 мин.

Пример 7.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 60, свинец - 40. Электропроводность полимерной композиции составляет 6⋅10-2 (Ом×мм2/см)-1, показатель текучести расплава 0.2 г/10 мин.

Пример 8.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, свинец - 50. Электропроводность полимерной композиции составляет 7⋅10-3 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.

Пример 9.

В условиях примера 1 при следующей загрузке компонентов мас.% АБС - 80, медь - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 3,1 г/10 мин.

Пример 10.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, медь - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,45 г/10 мин.

Пример 11.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 60, медь - 40. Электропроводность полимерной композиции составляет 7⋅10-2 (Ом×мм2/см)-1, показатель текучести расплава 0,5 г/10 мин.

Пример 12.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, медь - 50. Электропроводность полимерной композиции составляет 3,8⋅10-2 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.

Пример 13.

В условиях примера 1 при следующей загрузке компонентов мас.% АБС - 80, алюминий - 20. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 2,78 г/10 мин.

Пример 14.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 70, алюминий - 30. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 1,3 г/10 мин.

Пример 15.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 60, алюминий - 40. Электропроводность полимерной композиции составляет 6,7⋅10-2 (Ом×мм2/см)-1, показатель текучести расплава 0,3 г/10 мин.

Пример 16.

В условиях примера 1 при следующей загрузке компонентов мас.%: АБС - 50, алюминий - 50. Электропроводность полимерной композиции составляет 1,7⋅10-2 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.

Таким образом, использование в качестве полимерной основы АБС позволяет получить полимерные композиции с повышенной электропроводностью и технологичностью, предназначенные для изготовления трехмерных объектов методом 3D-печати, который предполагает нанесение электропроводящего полимерного слоя в виде расплава.

Похожие патенты RU2620435C1

название год авторы номер документа
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Николаев Алексей Валерьевич
  • Кокшарова Юлия Александровна
RU2641921C2
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Кокшарова Юлия Александровна
  • Колтаев Николай Владимирович
  • Гадеев Азат Салаватович
RU2641134C1
Электропроводящая полимерная композиция для 3D-печати 2015
  • Абдуллин Марат Ибрагимович
  • Глазырин Андрей Борисович
  • Колтаев Николай Владимирович
  • Нагаев Рустам Рифович
  • Кокшарова Юлия Александровна
  • Гадеев Азат Салаватович
RU2611880C2
ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ 3D-ПЕЧАТИ 2015
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Колтаев Николай Владимирович
  • Нагаев Рустам Рифович
  • Николаев Сергей Николаевич
  • Кокшарова Юлия Александровна
  • Гадеев Азат Салаватович
RU2597675C1
Электропроводящая термопластичная эластомерная композиция 2018
  • Волосов Игорь Вячеславович
  • Корецкий Игорь Аркадьевич
  • Локтионова Мария Валерьевна
  • Горковенко Денис Александрович
RU2690806C1
Электропроводящая полимерная композиция 2017
  • Бузлаев Анатолий Васильевич
  • Глушкин Сергей Владимирович
RU2664872C1
СПОСОБ ФОРМИРОВАНИЯ ЭЛЕКТРОПРОВОДЯЩИХ ДОРОЖЕК НА ПОДЛОЖКЕ 2011
  • Воронцов Леонид Викторович
  • Филимонов Владимир Евгеньевич
RU2468549C1
ЭЛЕКТРОПРОВОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИПРОПИЛЕНА И ГЛОБУЛЯРНОГО УГЛЕРОДНОГО НАНОНАПОЛНИТЕЛЯ 2008
  • Микитаев Абдулах Касбулатович
  • Галицейский Кирилл Борисович
  • Данилова-Волковская Галина Михайловна
  • Чуков Николай Александрович
  • Молоканов Георгий Олегович
RU2491302C2
Электропроводящая полимерная композиция с низким удельным объёмным сопротивлением 2017
  • Бузлаев Анатолий Васильевич
  • Глушкин Сергей Владимирович
RU2664873C1
ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ 1992
  • Нинин В.К.
  • Тихомирова Р.Г.
  • Поцелуева Н.В.
  • Шегабутдинова Л.А.
RU2016424C1

Реферат патента 2017 года Электропроводящие металлонаполненные полимерные композиции для 3D-печати

Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы. Полимерная композиция содержит в качестве полимерной основы сополимер акрилонитрила бутадиен стирола (АБС) в количестве от 50 до 80 мас.%; в качестве токопроводящего металлического наполнителя: припой марки ПОС-63, свинец, медь и алюминий. Техническим результатом изобретения является увеличение электропроводности и показателя текучести расплава для полимерных композиционных материалов, предназначенных для 3D-печати. 1 табл.

Формула изобретения RU 2 620 435 C1

Электропроводящая металлонаполненная полимерная композиция для 3D-печати, состоящая из полимерной основы, токопроводящего наполнителя, отличающаяся тем, что в качестве полимерной основы используется сополимер акрилонитрила бутадиен стирола, в качестве токопроводящего наполнителя используется металлический наполнитель при следующем соотношении компонентов, мас.%:

АБС 50-80 металлический наполнитель 20-50,

при этом в качестве металлического наполнителя используются припой марки ПОС-63, свинец, медь и алюминий.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620435C1

CN 105001586 A, 28.10.2015
US 4830779 A, 16.05.1989
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ, ИМЕЮЩИХ ЭЛЕКТРОПРОВОДЯЩЕЕ ПОКРЫТИЕ 2006
  • Гелльрих Андреас
RU2402385C2
Электропроводящий клей 1982
  • Матвеева Надежда Николаевна
  • Залис Зоя Ивановна
  • Павлюц Тамара Ивановна
  • Кондрашова Лидия Алексеевна
SU1052532A1

RU 2 620 435 C1

Авторы

Абдуллин Марат Ибрагимович

Басыров Азамат Айратович

Николаев Алексей Валерьевич

Кокшарова Юлия Александровна

Нагаев Рустам Рифович

Даты

2017-05-25Публикация

2016-07-14Подача