Электропроводящая полимерная композиция для 3D-печати Российский патент 2017 года по МПК C09C1/00 C08L47/00 C08K5/13 H01B1/12 H01B1/04 B29C64/00 

Описание патента на изобретение RU2611880C2

Изобретение относится к области получения электропроводящих полимерных композиций, используемых для изготовления токопроводящих материалов, предназначенных для 3D-печати.

Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы.

Известны электропроводящие полимерные композиции на основе сополимера акрилонитрила-бутадиена-стирола и технического углерода марки Raven 960, применяемые для изготовления трехмерных объектов методом 3D-печати. [Runqing Oua, Rosario A. Gerhardta, Courtney Marrettb, Alexandre Moulartb, Jonathan S. Colton. Assessment of percolation and homogeneity in ABS/carbon black composites by electrical measurements. Composites: Part B. 2003. - V. 34. - P. 607-614.]

Недостатком указанной полимерной композиции является низкая электропроводность и текучесть вследствие использования наполненного акрилонитрил-бутадиен-стирола.

Наиболее близкими к предлагаемой электропроводящей композиции являются электропроводящие композиции [Абдуллин М.И., Басыров А.А., Гадеев А.С. и др. Сравнение электропроводности токопроводящих полимерных композиций, наполненных техническим углеродом и углеродными волокнами. Журнал научных публикаций аспирантов и докторантов, 2014, №8 (98), с. 95-99] на основе термопластов (полипропилен, полиэтилен, стирол-бутадиеновый сополимер) и технического углерода марок П805Э, Printex ХЕ-2В и УВИС АК-П, следующего состава, масс. %:

1. Полиэтилен марки 2287 - технический углерод (ТУ) марки П805Э со степенью наполнения 40-70%;

2. Полипропилен марки 01270 - углеродные волокна марки УВИС АК-П со степенью наполнения 10-70%;

3. Полиэтилен марки 2287 - ТУ марки Printex ХЕ-2В со степенью наполнения 5-20%;

4. Полипропилен марки 01270 - ТУ марки Printex ХЕ-2В со степенью наполнения 5-20%;

5. Стирол-бутадиеновый сополимер марки LG-501 - ТУ марки Printex ХЕ-2В со степенью наполнения 10-25%.

Недостатком данных электропроводящих композиций является низкая текучесть расплава (показатель текучести расплава (ПТР) - менее 2,5 г/10 мин), что не позволяет осуществлять изготовление на их основе трехмерных объектов методом 3D-печати, который предполагает нанесение электропроводящего полимерного слоя в виде расплава.

Техническим результатом изобретения является получение полимерных композиций с повышенной электропроводностью и технологичностью, предназначенных для 3D-печати.

Указанный технический результат достигается тем, что в качестве полимерной основы электропроводящей композиции используется синдиотактический 1,2-полибутадиен (1,2-СПБ). Электропроводящая полимерная композиция содержит компоненты в следующем соотношении, масс. %:

1,2-СПБ 77,5-94,5 технический углерод 3-20 антиоксидант 2,5

В качестве технического углерода может использоваться технический углерод марок ТУ П803, Printex ХЕ-2В или углеродные волокна марки УВИС АК-П. В качестве антиоксиданта может использоваться технический ионол «марки Б».

Использование в составе электропроводящей композиции 1,2-СПБ позволяет существенно увеличить электропроводность и показатель текучести расплава электропроводящих полимерных композиций по сравнению с прототипом.

Электропроводящую полимерную композицию получают следующим образом.

В реактор загружают 3-20 масс. % технического углерода, 77,5-94,5 масс. % 1,2-СПБ, 2,5 масс. % технического ионола. Компоненты смешивают в металлическом смесителе, снабженном механической мешалкой, в течение 12 мин при скорости перемешивания 440 мин-1.

Порошкообразную получаемую композицию загружают в лабораторный одношнековый экструдер (D/L=15 см, глубиной витка 16,5 мм, ширина гребня 20 мм) и получают экструдат при температуре материального цилиндра 150°C и скорости вращения шнека 30 мин-1.

Измерение удельной электропроводности приготовленных таким образом полимерных композиций проводят на цилиндрических образцах длиной около 20 мм и диаметром 4 мм контактным способом. Измерение показателя текучести расплава полимерных композиций проводят на экструзионном пластографе ИИРТ-АМ. Значение электропроводности и ПТР полимерных композиций определяют по ГОСТ 11645-73.

Данное изобретение иллюстрируется следующими примерами.

Пример 1.

В смеситель загружают 87,5 масс. % 1,2-СПБ, 10 масс. % гранулированного технического углерода марки ТУ П803, 2,5 масс. % технического ионола. Композицию смешивают в смесителе в течение 12 мин при скорости перемешивания 440 мин-1. Полученную порошкообразную композицию гранулируют на лабораторном одношнековом экструдере при температуре 150°C. Электропроводность полимерной композиции составляет 6×10-7 (Ом×мм2/см)-1, показатель текучести расплава 5 г/10 мин.

Пример 2.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 77,5, технический углерод марки ТУ П803 - 20, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 1,9×10-5 (Ом×мм2/см)-1, показатель текучести расплава 2 г/10 мин.

Пример 3.

В условиях примера 1 при следующей загрузке компонентов, масс. % 1,2-СПБ - 92,5, углеродные волокна марки УВИС АК-П - 5, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 1,00×10-8 (Ом×мм2/см)-1, показатель текучести расплава 5 г/10 мин.

Пример 4.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 87,5, углеродные волокна марки УВИС АК-П - 10, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 8,0×10-7 (Ом×мм2/см)-1, показатель текучести расплава 1,3 г/10 мин.

Пример 5.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 94,5, технический углерод марки Printex ХЕ-2В - 3, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 4×10-7 (Ом×мм2/см)-1, показатель текучести расплава 12 г/10 мин.

Пример 6.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 92,5, технический углерод марки Printex ХЕ-2В - 5, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 6×10-7 (Ом×мм2/см)-1, показатель текучести расплава 6,5 г/10 мин.

Пример 7.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 87,5, технический углерод марки Printex ХЕ-2В - 10, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 1,47×10-4 (Ом×мм2/см)-1, показатель текучести расплава 1,2 г/10 мин.

Пример 8.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 82,5, технический углерод марки Printex ХЕ-2В - 15, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 4,7×10-3 (Ом×мм2/см)-1, показатель текучести расплава 0,48 г/10 мин.

Пример 9.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 77,5, технический углерод марки Printex ХЕ-2В - 20, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 1,9×10-2 (Ом×мм2/см)-1, показатель текучести расплава 0,12 г/10 мин.

Пример 10.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 76,5, технический углерод марки Printex ХЕ-2В - 21, технический ионол «марки Б» - 2,5. Электропроводность полимерной композиции составляет 1,3×10-1 (Ом×мм2/см)-1, расплав полимерной композиции не проявляет текучести.

Пример 11.

В условиях примера 1 при следующей загрузке компонентов, масс. %: 1,2-СПБ - 95,5, технический углерод марки Printex ХЕ-2В - 2, технический ионол «марки Б» - 2,5. Полученная полимерная композиция не обладает электропроводностью, показатель текучести расплава 16 г/10 мин.

Таким образом, использование в качестве полимерной основы 1,2-СПБ позволяет получить полимерные композиции с повышенной электропроводностью и технологичностью, предназначенные для изготовления трехмерных объектов методом 3D-печати, который предполагает нанесение электропроводящего полимерного слоя в виде расплава.

Использование в качестве антиоксиданта технического ионола марки «Б» увеличивает термостабильность угленаполненных композиций при их переработке и продолжительность срока эксплуатации изделий из таких композиций.

Похожие патенты RU2611880C2

название год авторы номер документа
ЭЛЕКТРОПРОВОДЯЩАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ 3D-ПЕЧАТИ 2015
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Колтаев Николай Владимирович
  • Нагаев Рустам Рифович
  • Николаев Сергей Николаевич
  • Кокшарова Юлия Александровна
  • Гадеев Азат Салаватович
RU2597675C1
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Николаев Алексей Валерьевич
  • Кокшарова Юлия Александровна
RU2641921C2
Электропроводящая термопластичная эластомерная композиция 2018
  • Волосов Игорь Вячеславович
  • Корецкий Игорь Аркадьевич
  • Локтионова Мария Валерьевна
  • Горковенко Денис Александрович
RU2690806C1
Электропроводящая металлонаполненная полимерная композиция для 3D-печати (варианты) 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Кокшарова Юлия Александровна
  • Колтаев Николай Владимирович
  • Гадеев Азат Салаватович
RU2641134C1
Электропроводящие металлонаполненные полимерные композиции для 3D-печати 2016
  • Абдуллин Марат Ибрагимович
  • Басыров Азамат Айратович
  • Николаев Алексей Валерьевич
  • Кокшарова Юлия Александровна
  • Нагаев Рустам Рифович
RU2620435C1
Способ получения электропроводящей полимерной композиции 1982
  • Павлий Василий Григорьевич
  • Заикин Александр Евгеньевич
  • Кузнецов Евгений Васильевич
  • Зайцев Александр Иванович
  • Вальц Вальтер Эдуардович
  • Липатов Юрий Сергеевич
  • Лебедев Евгений Викторович
  • Валетдинов Ренат Кадырович
SU1113391A1
Электропроводящая полимерная композиция 1981
  • Павлий Василий Григорьевич
  • Харитонов Евгений Александрович
  • Кузнецов Евгений Васильевич
  • Валетдинов Ренат Кадырович
  • Белякова Альбина Михайловна
  • Зайцев Александр Иванович
  • Краев Владимир Михайлович
  • Абдулхакова Назия Насыровна
SU1010087A1
Электропроводящая композиция на основе полиолефина 1984
  • Архипов Николай Васильевич
  • Павлий Василий Григорьевич
  • Харитонов Евгений Александрович
  • Заикин Александр Евгеньевич
  • Кузнецов Евгений Васильевич
  • Вальц Вальтер Эдуардович
  • Абдулхакова Назия Насыровна
  • Аникеев Валерий Николаевич
SU1219610A1
Электропроводящая полимерная композиция 2017
  • Бузлаев Анатолий Васильевич
  • Глушкин Сергей Владимирович
RU2664872C1
Электропроводящая полимерная композиция с низким удельным объёмным сопротивлением 2017
  • Бузлаев Анатолий Васильевич
  • Глушкин Сергей Владимирович
RU2664873C1

Реферат патента 2017 года Электропроводящая полимерная композиция для 3D-печати

Изобретение относится к производству 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы. Описана электропроводящая полимерная композиция для 3D-печати, состоящая из полимерной основы, углеродного наполнителя, которая дополнительно содержит антиоксидант, в качестве полимерной основы используется синдиотактический 1,2-полибутадиен, при следующем соотношении, мас.%: 1,2-СПБ - 77,5-94,5; технический углерод - 3-20; антиоксидант - 2,5. Технический результат: получение полимерных композиций с повышенной электропроводностью и технологичностью, предназначенных для 3D-печати. 2 з.п. ф-лы, 1 табл., 11 пр.

Формула изобретения RU 2 611 880 C2

1. Электропроводящая полимерная композиция для 3D-печати, состоящая из полимерной основы, углеродного наполнителя, отличающаяся тем, что она дополнительно содержит антиоксидант, в качестве полимерной основы используется синдиотактический 1,2-полибутадиен (1,2-СПБ) при следующем соотношении, мас.%:

1,2-СПБ 77,5-94,5 технический углерод 3-20

антиоксидант 2,5

2. Электропроводящая композиция по п. 1, где в качестве технического углерода используются технические углероды марок ТУ П803, Printex ХЕ-2 В или углеродные волокна марки УВИС АК-П.

3. Электропроводящая композиция по п. 1, где в качестве антиоксиданта используется технический ионол марки «Б».

Документы, цитированные в отчете о поиске Патент 2017 года RU2611880C2

КОМПОЗИЦИЯ ПОЛИМЕРА С АНТИСТАТИЧЕСКОЙ ОТДЕЛКОЙ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И КОМПОЗИЦИЯ ДЛЯ АНТИСТАТИЧЕСКОЙ ОТДЕЛКИ 1997
  • Бруно Хилти
  • Маркус Брюкле
  • Йюрген Пфайффер
  • Эрнст Миндер
  • Маркус Гроб
RU2161635C2
ИЗДЕЛИЕ ДЛЯ РЕГУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОГО НАПРЯЖЕНИЯ 2002
  • Пирс Дейвид Фрэнсис
  • Луингтон Шон Майкл
  • Стоукер Джон Дейвид
  • Брумхем Джеймс Ричард
  • Скэрр Дейвид Джеймс
RU2305353C2
ВОДОПОГЛОЩАЮЩИЕ КЛЕЕВЫЕ КОМПОЗИЦИИ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2006
  • Фельдштейн Михаил Майорович
  • Байрамов Данир Фанисович
  • Новиков Михаил Борисович
  • Куличихин Валерий Григорьевич
  • Платэ Николай Альфредович
  • Клири Гари В.
  • Сингх Парминдер
RU2416433C2
САЖА, ОБРАБОТАННАЯ ПОЛИЭТИЛЕНГЛИКОЛЕМ, И ЕЕ СОЕДИНЕНИЯ, УСТРОЙСТВО, ПРОВОДЯЩЕЕ ЭЛЕКТРИЧЕСТВО, И ЭКРАН СИЛОВОГО КАБЕЛЯ 1996
  • Фленникен Синди Л.
  • Менаши Джемил
  • Уайтхаус Роберт С.
RU2190639C2

RU 2 611 880 C2

Авторы

Абдуллин Марат Ибрагимович

Глазырин Андрей Борисович

Колтаев Николай Владимирович

Нагаев Рустам Рифович

Кокшарова Юлия Александровна

Гадеев Азат Салаватович

Даты

2017-03-01Публикация

2015-06-01Подача