Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей.
Известен способ ионно-плазменного азотирования инструмента из быстрорежущей стали, включающий размещение инструмента в установку для ионного азотирования и осуществление азотирования при 400-500°C в течение 5-120 мин до формирования слоя толщиной 5-200 мкм (RU 2013464, 30.05.1994) /1/.
Известен способ азотирования деталей из конструкционных легированных сталей, включающий высокотемпературное ионное азотирование при температуре выше Ac3, закалку с температуры полного растворения нитридных фаз, отпуск и дополнительное ионное азотирование при температуре 500°C на глубину не менее глубины деазотированного слоя с получением азотированного слоя глубиной до 1,4 мм за суммарное время обработки порядка 25 часов (RU 2058421 С1, 20.04.1996) /2/.
Наиболее близким аналогом принимается известный способ ионно-плазменного азотирования инструмента из быстрорежущей стали, включающий нагрев изделий в вакууме до 500-540°C в плазме смеси газов азота, аргона и ацетилена повышенной плотности в течение 3-5 ч и дополнительный нагрев до 900-1000°C, выдержку и охлаждение в потоке гелия для осуществления закалки изделия (RU 2409700 C1, 20.01.2011) /3/.
Техническим результатом заявленного изобретения является увеличение глубины азотированного слоя за короткий промежуток времени, повышение суммарной износостойкости перетачиваемого инструмента за счет заданной глубины упрочненного азотированного слоя.
Технический результат достигается тем, что в способе ионно-плазменного азотирования инструмента из инструментальной стали, включающий размещение предварительно отожженного инструмента в вакуумной камере, его нагрев в газовой среде до заданной температуры и ионно-плазменное азотирование, отличающемся тем, что предварительно отожженный инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450°C и не выше Ac1(50÷70)°C, с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота, с концентрацией азота не менее 20%, двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5 А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5÷2 ч, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм.
В результате получается азотированный слой со структурой азотистого мартенсита и небольшим количеством нитридной фазы, обладающий повышенной твердостью, теплостойкостью и износостойкостью, глубиной до 2,5 мм за короткое время выдержки без существенного усложнения процесса химико-термической обработки.
Осуществление изобретения
Пример 1
Азотирование проводят на установке с двухступенчатым вакуумно-дуговым разрядом. Особенностью установки является высокая эмиссионная способность плазмы, которая обеспечивает эффективный нагрев, очистку и высокую скорость диффузии азота в поверхностный слой /4/. Инструмент, изготовленный из отожженной легированной инструментальной стали ХВГ, помещали в вакуумную камеру установки. Инструмент нагревают до 590°C в среде аргона при давлении 0,4 Па, при этом происходит ионная очистка поверхности. Ионно-плазменное азотирование проводят при 590°C в течение 1 ч в среде газов азота 45% и аргона 55% при токе дуги Iд=100 А и токе дополнительного анода Iда=90 А, на стол с деталью подают напряжение смещения U=-800 B. Инструмент охлаждают до комнатной температуры в вакуумной камере и проводят стандартную термическую обработку для этой стали: выдержка в соляной ванне в течение 2 мин при температуре 850°C (время выдержки в соляной ванне зависит от размеров инструмента), охлаждение в масле и отпуск при 160°C - 1 ч. В результате получают азотированный слой со структурой азотистого мартенсита и небольшим количеством нитридной фазы, обладающий повышенной твердостью 9300 МПа, теплостойкостью и износостойкостью, глубиной более 2 мм.
Пример 2
Азотирование проводят на установке с двухступенчатым вакуумно-дуговым разрядом. Инструмент, изготовленный из отожженной заготовки легированной инструментальной быстрорежущей стали Р6М5, помещают в вакуумную камеру. Инструмент нагревают до 650°C в среде аргона при давлении 0,4 Па, при этом происходит ионная очистка поверхности. Ионно-плазменное азотирование проводят при 650°C в среде чистого азота (100%) в течение 1 ч при токе дуги Iд=80 А и токе дополнительного анода Iда=75 А, на стол с деталью подают напряжение смещения U=-700B. Деталь охлаждают до комнатной температуры и проводят стандартную термическую обработку для этой стали: выдержка в соляной ванне в течение 4 мин при температуре 1220°C, охлаждение в масле и трехкратный отпуск при 560°C по 1 ч каждый. В результате общая глубина азотированного слоя составила более 2 мм с максимальной твердостью 9500 МПа.
Были проведены испытания перетачиваемого инструмента в виде токарных пластин из быстрорежущей стали марки Р6М5. Испытания на стойкость при точении конструкционной стали 45 проводились на скорости 90 м/мин с подачей 0,15 мм/об, глубиной резания 0,275 мм без охлаждения и показали повышение суммарной стойкости инструмента (включая повышение стойкости до переточки) в результате переточки на глубину 0,8 мм по передней поверхности, а по задней поверхности на глубину 0,2 мм, более чем в 4 раза по сравнению с неазотированными пластинами. Глубина азотированного слоя после финишного шлифования на 0,35 мм составила 1,7 мм с максимальным значением микротвердости 9600 МПа.
Источники информации
1. Григорьев С.Н., патент №2036245, «Способ химико-термической обработки изделий ионно-плазменным методом в среде реакционного газа».
2. Герасимов С.Α., Карпухин С.Д, Елисеев Э.А., и др., патент №2058421, «Способ азотирования деталей из конструкционных легированных сталей».
3. Григорьев C.H., Волосова М.А., Климов В.Н. «Модификация поверхности режущего инструмента из быстрорежущей стали путем вакуумно-плазменной обработки. Физика и химия обработки материалов. 2005. №5, с. 11-18.
4. Будилов В.В., Киреев P.M., Рамазанов К.Н., Вафин Р.К., патент №2409700, «Способ азотирования в плазме тлеющего разряда».
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОРЕЖУЩЕГО ИНСТРУМЕНТА, ИЗГОТОВЛЕННОГО ИЗ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ | 2009 |
|
RU2413793C2 |
Способ формирования защитного покрытия на поверхности стального резьбового вала резьбового соединения устройства для балансировки автомобильных колес | 2021 |
|
RU2763467C1 |
Способ упрочнения стального изделия ионно-плазменной карбонитрацией | 2017 |
|
RU2682986C1 |
Способ получения резьбовых сегментов сборной быстросъемной гайки резьбового соединения устройства для балансировки автомобильных колес | 2021 |
|
RU2777830C1 |
СПОСОБ ТЕРМИЧЕСКОЙ И ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ В ВАКУУМЕ | 2006 |
|
RU2324001C1 |
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТНОГО СЛОЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ | 2005 |
|
RU2291227C1 |
СПОСОБ ИОННОГО АЗОТИРОВАНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА ИЗ ЛЕГИРОВАННОЙ СТАЛИ | 2016 |
|
RU2634400C1 |
Способ упрочнения инструмента из быстрорежущей стали | 2019 |
|
RU2745919C1 |
СПОСОБ ЛОКАЛЬНОЙ ОБРАБОТКИ СТАЛЬНОГО ИЗДЕЛИЯ ПРИ ИОННОМ АЗОТИРОВАНИИ В МАГНИТНОМ ПОЛЕ | 2016 |
|
RU2640703C2 |
СПОСОБ КОМБИНИРОВАННОЙ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СТАЛЕЙ И ТВЕРДЫХ СПЛАВОВ | 2008 |
|
RU2370570C1 |
Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей. Для увеличения глубины азотируемого слоя за короткий промежуток времени, повышения износостойкости перетачиваемого инструмента, изготовленного из отожженной заготовки, инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм. 2 пр.
Способ ионно-плазменного азотирования инструмента из легированной инструментальной стали, включающий размещение инструмента, изготовленного из отожженной заготовки, в вакуумной камере, его нагрев в газовой среде до заданной температуры, ионно-плазменное азотирование, охлаждение и термическую обработку, отличающийся тем, что нагрев инструмента в вакуумной камере осуществляют в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом силу тока дуги устанавливают (80-100)±0,5А, а силу тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в вакуумной камере, а термическую обработку проводят путем закалки и отпуска с получением азотированного слоя глубиной 2-2,5 мм.
СПОСОБ АЗОТИРОВАНИЯ В ПЛАЗМЕ ТЛЕЮЩЕГО РАЗРЯДА | 2009 |
|
RU2409700C1 |
SU 1790625 A3, 23.01.1993 | |||
SU 1466260 А1, 10.01.1996 | |||
СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЯ ИЗ СТАЛИ ИЛИ ИЗ ЦВЕТНОГО СПЛАВА | 2009 |
|
RU2413033C2 |
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ | 2011 |
|
RU2464355C1 |
СПОСОБ УПРАВЛЕНИЯ ПОТОКАМИ ДАННЫХ В ЦЕНТРАХ КОММУТАЦИИ ПРИ СОПРЯЖЕНИИ РАЗНОРОДНЫХ СЕТЕЙ | 2007 |
|
RU2369028C2 |
Авторы
Даты
2016-10-20—Публикация
2015-06-02—Подача