СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ МЕТАЛЛАМИ НАПОЛНИТЕЛЕЙ ДЛЯ РЕЗИН Российский патент 2016 года по МПК C08K3/04 C08K3/36 B82B3/00 C08K9/02 C08L21/00 

Описание патента на изобретение RU2602129C1

Изобретение относится к нанотехнологиям получения эластомерных композиционных материалов, модифицированных металлами переменной валентности, для повышения их теплопроводности, электропроводности, термостойкости, при высокотемпературных условиях эксплуатации, и придания эластомерам других специфических и уникальных физических и эксплуатационных свойств.

Известен способ получения наполнителя резины, при котором базовый порошок состава SiO2+С+ примеси оксидов металлов получают из исходной или предварительно обработанной анаэробными бактериями рисовой лузги обжигом при температуре 300-700°C, после чего смешивают ингредиенты, высушивают при температуре 110-120°C с постоянным перемешиванием, протирают через сито и получают гранулированный наполнитель (патент 2531180 РФ, МПК С08К 3/04, С08К 3/22, С08К 3/36, 20.10.2014).

Недостатком предложенного способа является ограничения при использовании его для введения модифицирующих добавок в виде частиц металлов переменной валентности. Кроме этого при использовании предложенного наполнителя не обеспечивается повышенная термостойкость, электропроводность и теплопроводность резин.

Известен способ получения модифицированного наполнителя для каучуков, резин и других эластомеров, содержащего фуллерены и 80-95 мас. % углеродной смеси, изготовленной из графита, обработанного хромовой кислотой при отношении массы графита к массе кислоты от 1:0,2 до 1:0,5, путем резистивного нагрева при пусковом токе величиной 90 А и рабочем токе величиной 25-35 А (патент 2151781 РФ, МПК С08К 3/04, C08L 21/00, 27.06.2000).

Недостатком этого способа является высокая трудоемкость, специальное аппаратурное оформление. Данная модификация не позволяет обеспечить повышенную термостойкость, электропроводность и теплопроводность резин.

Также известен способ получения наночастиц и изготовления материалов и устройств, содержащих наночастицы (патент 2233791 РФ, МПК В82В 3/00, B22F 9/30, G11B 5/845, 10.08.2004), включающий проведение процессов синтеза наночастиц, иммобилизованных на поверхности твердотельного носителя, и формирования материалов, содержащих наночастицы, отличающийся тем, что синтез наночастиц проводится под действием химических воздействий, или химических и физических воздействий, или их комбинаций в мономолекулярном слое на поверхности жидкой фазы.

Недостатком этого способа является высокая трудоемкость, низкий выход продукта.

Известен способ получения наполнителя резины, имеющий состав, мас. %: SiO2(26-98)+С(0,5-66)+ примесь Fe2O3(0,2-0,3)+ примеси оксидов CaO, Na2O, K2O, MgO, Al2O3 - остальное, плюс сверх 100% каучук, полученный из природного сырья, +S; с размерами кристаллов диоксида кремния диаметром 6-10, длиной 100-400 нм (патент 2530130 РФ, МПК С08К 3/04, С08К 3/22, С08К 3/36, C08L 21/00, С01В 33/12, 20.10.2014).

Недостатком предложенного способа является ограничения при использовании его для введения модифицирующих добавок в виде частиц металлов переменной валентности. Кроме этого при использовании предложенного наполнителя не обеспечивается повышенная термостойкость, электропроводность и теплопроводность резин.

Наиболее близким по технической сущности и решаемой задаче является способ терморазложения металлсодержащих соединений на поверхности микрогранул различной природы. Сущность способа заключается в том, что предварительно над разогретым углеводородным маслом создается «кипящий» слой микрогранул SiO2, политетрафторэтилена и др. и при достижении в реакторе достаточно высокой температуры (250-300°C) по каплям вводится раствор металлсодержащего соединения таким образом, чтобы обеспечить его разложение с образованием наночастиц нужного состава на поверхности микрогранул в кипящем слое (Кособудский, И.Д. Введение в химию и физику наноразмерных объектов / И.Д. Кособудский, Н.М. Ушаков, Г.Ю. Юрков. - Саратов: СГТУ, 2007. - 182 с., стр. 52-55).

Причинами, препятствующими достижению требуемого технического результата при использовании этого способа получения наполнителей, модифицированных металлами переменной валентности, является высокая трудоемкость или невозможность последующей отмывки модифицированного наполнителя от минерального масла, низкий выход конечного продукта и сложное аппаратурное оформление.

Задачей настоящего изобретения является разработка способа модификации наполнителей металлами переменной валентности для использования их при получении резин со специальными свойствами (повышенная термостойкость, электропроводность, теплопроводность и др.).

Техническим результатом предлагаемого способа является упрощение способа модификации наполнителя для резин, формирование высокодисперсных частиц металлов переменной валентности на поверхности наполнителя.

Технический результат достигается в способе получения модифицированных металлами наполнителей для резин, включающем высокотемпературное разложение формиатов кобальта, никеля или меди с образованием на поверхности наполнителя, выбранного из ряда оксид кремния, технический углерод, нано- и микрочастиц металла, при этом осуществляют высокотемпературное разложение сухой смеси наполнителя и формиата металла, полученной после предварительного выдерживания их в водном растворе в течение 72 часов при 25°C.

Сущность изобретения заключается в том, что модифицированный наполнитель получают методом адсорбции растворенного формиата металла (прекурсора) на поверхности наполнителя с его последующим высокотемпературным разложением.

При этом при нагревании прекурсора, адсорбированного на поверхности наполнителя, происходит его разложение с выделением металла, частички которого стабилизируются на поверхности наполнителя.

Высокотемпературное разложение формиатов металлов переменной валентности происходит в среде наполнителя в смеси с ним.

В предлагаемом способе используют следующие компоненты.

В качестве прекурсора используют дигидрат формиата меди Cu(НСОО)2·2H2O (ТУ 6-09-4384-77), дигидрат формиата никеля Ni(HCOO)2·2H2O (ТУ 6-09-02-478-88), дигидрат формиата кобальта Со(НСОО)2·2H2O (ТУ 6-09-08-1634-82).

В качестве наполнителей используют технический углерод печной из жидкого сырья П324 (ГОСТ 7885-77), минеральные наполнители аэросил А-175 (ГОСТ 19729-74) и коллоидную кремнекислоту БС-120 (ГОСТ 18307-78).

Способ получения модифицированных металлами наполнителей для резин осуществляется следующим образом.

В химическом стакане готовится насыщенный водный раствор формиата металла. Затем добавляется наполнитель, полученная суспензия при периодическом перемешивании выдерживается трое суток при 25°C. В качестве центра адсорбции формиата металла выступает наполнитель, на который происходит адсорбция прекурсора. Затем раствор отфильтровывается и осадок, представляющий собой смесь наполнителя и формиата металла, адсорбированного на наполнителе, термостатируется в течение 3 часов при температуре 70°C. Полученный продукт измельчается в ступке. Измельченный порошок помещается в керамический стакан и прогревается в муфельной печи при индивидуальной для каждого формиата (прекурсора) температуре модификации в течение одного часа в инертной среде. Время выдержки в растворе может варьироваться в зависимости от необходимого количества вводимого металла и размеров образующихся частиц, то есть чем меньше концентрация прекурсора в растворе, тем меньше образующиеся адсорбированные частицы соли и тем меньше образующаяся частица металла. Аналогично влияет и время выдержки полученной суспензии до начала фильтрации и сушки.

Данные о режимах модификации наполнителя для формиатов разных металлов представлены в таблице 1.

Определение размера частиц металлов и исследование их строения в наполнителе производится при помощи растрового электронного микроскопа Versa 3D DualBeam (компании FEI, США) в режиме низкого вакуума.

В таблице 2 представлено содержание металлов в наполнителе, определенное по данным микрорентгеноспектрального анализа модифицированных наполнителей, содержащих высокодисперсные частицы меди, никеля и кобальта.

На фигуре приведены микрофотографии частиц металлов, полученных на различных «подложках» (частицах наполнителя).

В зависимости от типа «подложки» образовывались высокодисперсные частицы металлов различной формы и различных размеров (от десятка нанометров до нескольких микрон). Так, в случае белой сажи БС-120 образовались частицы меди кубической формы; в аэросиле А-175 образовались частицы меди преимущественно в форме октаэдров; в техническом углероде П-324 образовывались шарообразные частицы меди, собранные в агломераты различных размеров. При синтезе никеля в массе наполнителя образовались частицы неправильной формы. Частицы кобальта имеют преимущественно шарообразную форму; кроме того, на агломератах белой сажи и аэросила наблюдается образования в виде рыхлой «ветвистой» структуры, построенные из частиц кобальта, в то время как для П-324 характерно образование цепочечных структур из кобальта и частичек технического углерода.

Из данных таблицы 2 видно, что содержание металлов переменной валентности в наполнителях можно варьировать в широких пределах и в зависимости от типа наполнителя и природы металлических частиц.

Полученные результаты подтверждают модификацию наполнителей (оксида кремния, технического углерода) с образованием на поверхности наполнителя высокодисперсиых частиц металлов переменной валентности.

Пример 1.

В химическом стакане емкостью 500 мл в 100 мл воды готовили насыщенный водный раствор формиата меди. Затем добавляли 50 г коллоидной кремнекислоты БС-120, полученную суспензию при периодическом перемешивании выдерживали трое суток (72 часа) при 25°C. Затем раствор отфильтровывали и осадок сушили в термостате (термостатировали) в течение 3 часов при температуре 70°C. Полученный продукт измельчали в ступке. Измельченный порошок помещали в керамический стакан и прогревали в муфельной печи при температуре 230°C в течение одного часа в среде аргона.

Пример 2.

Выполнялся аналогично примеру 1 с использованием наполнителя аэросила А-175.

Пример 3. Выполнялся аналогично примеру 1 с использованием наполнителя технического углерода П324.

Пример 4.

Выполнялся аналогично примеру 1 с использованием в качестве прекурсора формиата никеля. Измельченный порошок прогревали в муфельной печи при температуре 260°C.

Пример 5.

Выполнялся аналогично примеру 4 с использованием наполнителя аэросила А-175.

Пример 6.

Выполнялся аналогично примеру 4 с использованием наполнителя технического углерода П324.

Пример 7.

Выполнялся аналогично примеру 1 с использованием в качестве прекурсора формиата кобальта. Измельченный порошок прогревали в муфельной печи при температуре 300°C.

Пример 8.

Выполнялся аналогично примеру 7 с использованием наполнителя аэросила А-175.

Пример 9.

Выполнялся аналогично примеру 7 с использованием наполнителя технического углерода П324.

Таким образом, предложенный простой способ получения модифицированных металлами наполнителей для резин путем высокотемпературного разложения сухой смеси наполнителя и формиата металла, полученной после предварительного выдерживания их в водном растворе в течение 72 часов при 25°C, обеспечивает формирование высокодисперсных частиц металлов переменной валентности на поверхности наполнителя для использования его при получении резин со специальными свойствами (повышенная термостойкость, электропроводность, теплопроводность и др.).

Похожие патенты RU2602129C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОПРОВОДЯЩИХ ЭЛАСТОМЕРНЫХ МЕТАЛЛСОДЕРЖАЩИХ КОМПОЗИЦИЙ 2014
  • Новаков Иван Александрович
  • Каблов Виктор Федорович
  • Петрюк Иван Павлович
  • Михайлюк Алла Евгеньевна
  • Калеев Владислав Олегович
  • Бельдягин Алексей Петрович
RU2541797C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛАСТОМЕРНЫХ МЕТАЛЛСОДЕРЖАЩИХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2011
  • Новаков Иван Александрович
  • Петрюк Иван Павлович
  • Каблов Виктор Федорович
  • Михайлюк Алла Евгеньевна
  • Половинкина Ольга Васильевна
RU2470958C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛАСТОМЕРНЫХ МЕТАЛЛСОДЕРЖАЩИХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2009
  • Новаков Иван Александрович
  • Каблов Виктор Федорович
  • Петрюк Иван Павлович
  • Сомова Алла Евгеньевна
RU2412957C2
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА 2012
  • Пашков Геннадий Леонидович
  • Сайкова Светлана Васильевна
  • Пантелеева Марина Васильевна
  • Линок Елена Витальевна
RU2483841C1
ПОЛИМЕРНЫЙ НАНОКОМПОЗИТ С УПРАВЛЯЕМОЙ АНИЗОТРОПИЕЙ УГЛЕРОДНЫХ НАНОТРУБОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Макунин Алексей Владимирович
  • Чечерин Николай Гаврилович
RU2520435C2
Способ получения пленочных медьсодержащих нанокомпозиционных материалов для защиты металлопродукции от коррозии 2018
  • Джардималиева Гульжиан Искаковна
  • Кыдралиева Камиля Асылбековна
  • Курочкин Сергей Александрович
  • Помогайло Дмитрий Анатольевич
  • Бадамшина Эльмира Рашатовна
  • Седов Игорь Владимирович
RU2716464C1
Способ получения нанокомпозитного магнитного и электропроводящего материала 2020
  • Озкан Света Жираслановна
  • Карпачева Галина Петровна
RU2739030C1
Нанокомпозитный электромагнитный материал и способ его получения 2021
  • Озкан Света Жираслановна
  • Костев Александр Иванович
  • Карпачева Галина Петровна
RU2768155C1
Электропроводящая термопластичная эластомерная композиция 2018
  • Волосов Игорь Вячеславович
  • Корецкий Игорь Аркадьевич
  • Локтионова Мария Валерьевна
  • Горковенко Денис Александрович
RU2690806C1
Гибридный магнитный и электропроводящий материал на основе полимера, биметаллических наночастиц и углеродных нанотрубок, и способ его получения 2019
  • Озкан Света Жираслановна
  • Карпачева Галина Петровна
RU2737184C1

Иллюстрации к изобретению RU 2 602 129 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ МЕТАЛЛАМИ НАПОЛНИТЕЛЕЙ ДЛЯ РЕЗИН

Изобретение относится к получению эластомерных композиционных материалов. Осуществляют приготовление насыщенного водного раствора формиата металла с добавлением наполнителя. Металл выбирают из меди, никеля или кобальта. Наполнитель выбирают из аэросила, коллоидной кремнекислоты или технического углерода. Для адсорбции формиата металла на наполнителе суспензию при периодическом перемешивании выдерживают в течение 72 часов при 25°C. Осуществляют фильтрацию раствора, сушку осадка в течение 3 часов при температуре 70°C и его измельчение. Измельченный порошок подвергают высокотемпературному разложению с образованием на поверхности наполнителя нано- и микрочастиц металла. Обеспечивается упрощение способа модификации наполнителя для резин и возможность формирования высокодисперсных частиц металлов переменной валентности на поверхности наполнителя для использования его при получении резин с повышенными термостойкостью, электропроводностью и теплопроводностью. 1 ил., 2 табл.

Формула изобретения RU 2 602 129 C1

Способ получения модифицированных металлами наполнителей для резин, включающий высокотемпературное разложение формиатов кобальта, никеля или меди с образованием на поверхности наполнителя, выбранного из ряда: оксид кремния, технический углерод, нано- и микрочастиц металла, отличающийся тем, что осуществляют высокотемпературное разложение сухой смеси наполнителя и формиата металла, полученной после предварительного выдерживания их в водном растворе в течение 72 часов при 25°С.

Документы, цитированные в отчете о поиске Патент 2016 года RU2602129C1

Прибор для определения давления почвенного воздуха 1928
  • Морозов В.И.
SU12865A1
СПОСОБ ПОЛУЧЕНИЯ НАПОЛНИТЕЛЯ РЕЗИНЫ 2012
  • Виноградов Виктор Владимирович
RU2531180C2
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ И ИЗГОТОВЛЕНИЯ МАТЕРИАЛОВ И УСТРОЙСТВ, СОДЕРЖАЩИХ НАНОЧАСТИЦЫ 2002
  • Губин С.П.
  • Хомутов Г.Б.
RU2233791C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛСОДЕРЖАЩЕГО УГЛЕРОДНОГО НАНОМАТЕРИАЛА 2012
  • Смирнов Александр Вячеславович
  • Васильев Алексей Иванович
  • Кочаков Валерий Данилович
  • Теруков Евгений Иванович
  • Бобыль Александр Васильевич
RU2499850C1
WO 2008043634 A1, 17.04.2008
WO 2013130772 A1, 06.09.2013.

RU 2 602 129 C1

Авторы

Петрюк Иван Павлович

Михайлюк Алла Евгеньевна

Новаков Иван Александрович

Каблов Виктор Федорович

Даты

2016-11-10Публикация

2015-07-16Подача