СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА БАРИЯ Российский патент 2016 года по МПК C01F11/00 C01B15/43 

Описание патента на изобретение RU2603371C1

Изобретение относится к способам получения пероксида бария путем термического разложения его солей.

Изобретение может найти применение в электровакуумной промышленности, черной металлургии, химической промышленности, в частности в производстве пиротехнических составов и т.п.

Пероксид бария - химическое соединение формулы BaO2. Пероксид бария является окислительным агентом, который используется при отбеливании. Он применяется в фейерверках в качестве окислителя, который дает ярко зеленый цвет, что присуще всем соединениям бария.

В результате прохождения обратимой абсорбции кислорода пероксид бария переходит в оксид бария. Кислород высвобождается при температуре выше 700°C:

Эта реакция является основой устаревшего теперь процесса Брина (Brin Process) по выделению кислорода из атмосферы [Holleman, A.F.; Wiberg, Е. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5].

Обычно для получения пероксида бария широко используются способы взаимодействия гидроксида бария с перекисью водорода.

Так, известен способ [Авт. свид. СССР 765208, МПК C01B 16/04, оп. 23.09.1980], включающий взаимодействие гидроокиси бария с перекисью водорода с подогревом суспензии, выдержкой смеси, фильтрацией и сушкой осадка.

По другому способу [Пат. РФ 2123472, МПК C01B 15/04, опуб. 20.12.1998] пероксид бария получают обработкой гидроксида бария перекисью водорода, осадок монопергидрата пероксида бария отделяют, сушат и подвергают термообрабатке при 800-850°C до разложения. Получают оксид бария с выходом 85-92%, который дополнительно окисляют кислородом. Получают пероксид бария, характеризующийся чувствительностью к трению 4 класса.

Известны способы получения пероксида бария при взаимодействии кислорода с оксидом бария, полученным в результате термического разложения углекислого или азотнокислого бария [У. Шамб и др. Перекись водорода. М., 1958, стр. 104-106]. Способы включают стадию нагревания углекислого или азотнокислого бария до температуры разложения с образованием оксида бария, затем выгрузку полученного оксида бария, измельчение и обработку его в потоке воздуха или кислорода до получения пероксида бария.

Известен способ получения пероксида бария [пат. США 28051128, НКИ США 23-187, оп. 03.09.1957], по которому оксид бария нагревают до 350-700°C в воздушной атмосфере, при парциальном давлении воды в воздухе от 4 до 7 мм рт.ст. Воздух подвергают специальной сушке для достижения в нем указанного содержания воды.

Недостатком указанных способов является проведение дополнительных трудоемких технологических операций, связанных с обработкой оксида бария в герметичном сосуде в потоке воздуха или кислорода.

В статье [Evgeny I. Vovk, Emre Emmez, et al., J. Phys. Chem. C, 2011, 115 (49), pp. 24256-24266] изучались химическая структура, морфология поверхности и природа адсорбированных частиц BaOx на поверхности платины (III). Установлено, что повышение адсорбции NO2 на оксидах бария BaOx(10 MLE)/Pt(III) приводит в основном к образованию частиц нитратов, которые разлагаются при высоких температурах через стадию формирования нитритов. Разложение нитрата до BaOx(10 MLE)/Pt(111) проходит в две последующие стадии:

(1) выделение NOx и образование BaO2 при 650 К и

(2) выделение NOx+O2 при 700 К.

Обработка кислородом поверхности оксида бария BaOx(10 MLE)/Pt+3 (111) при 873 К (600°C) облегчает образование BaO2 и приводит к агломерации доменов ВаОх, ведущей к генерации расположенных на Pt(111) поверхностных участков. Формируемый на поверхности ВаОх(10 MLE)/Pt(111) пероксид бария BaO2 является стабильным даже после обжига при 1073 К. При этом в более тонких пленках (θBaOx=2.5 MLE) BaO2 частично разлагается до BaO (MLE - Molecular layer epitaxy - Эпитаксия молекулярных слоев. Толковый англо-русский словарь по нанотехнологии. - М. В.В. Арсланов. 2009).

Однако такой процесс проходит на поверхности платины (III), являющейся дорогостоящим катализатором.

Наиболее близким по технической сущности к предлагаемому является способ получения пероксида бария из азотнокислого бария [М.Е. Позин. Технология минеральных солей, ч. I, Л.: Изд-во «Химия», 1974, стр. 460]. По этому способу азотнокислый барий нагревают до температуры 1000-1050°C в течение 30-35 часов, затем охлаждают в течение 10-11 часов, полученный оксид бария выгружают в герметически закрываемую емкость для предотвращения карбонизации на воздухе; затем оксид бария загружают в герметически закрываемую реторту и нагревают при температуре 450-700°C в струе воздуха или при нагнетании кислорода под давлением 2-3 ат. Полученный пероксид бария размалывают и просеивают.

Указанный способ является сложным и длительным, требует дополнительных технологических операций по выгрузке промежуточного продукта - оксида бария.

Целью изобретения является упрощение и удешевление способа получения пероксида бария.

Цель достигается тем, что пероксид бария получают термическим разложением азотнокислого бария в специальном режиме прокалки и охлаждения.

Сущность изобретения заключается в том, что разработан способ получения пероксида бария из азотнокислого бария, который отличается тем, что азотнокислый барий нагревают до температуры 750-850°C, выдерживают при этой температуре 30-120 минут, затем нагрев прекращают и выгружают пероксид бария после охлаждения до температуры не выше 300°C, причем охлаждение проводят не менее 180 минут.

Отличительными признаками заявляемого способа являются:

- выдерживание азотнокислого бария в воздушной среде при температуре 750-850°C в течение 30-120 минут;

- выгрузка полученного пероксида бария при температуре не выше 300°C,

- снижение температуры до 300°C проводят медленно, не быстрее чем 180 минут.

- получение пероксида бария в непрерывном режиме без выгрузки промежуточного продукта и без дополнительной обработки его принудительной подачей кислорода или воздуха.

Способ осуществляют следующим образом.

Азотнокислый барий нагревают в муфельной печи в фарфоровых тиглях до температуры 750-850°C и выдерживают при этой температуре 30-120 минут. После этого нагрев прекращают и тигли оставляют охлаждаться до температуры 300°C и менее. Охлаждение до указанной температуры проводят, оставив печь выключенной и не извлекая из нее полученный продукт. После снижения температуры в печи до 300°C, которое проводится за 180-240 минут или более, продукт извлекают и анализируют.

Продукт подвергают химическому анализу по методике, представленной в издании [Вольнов И.И. Перекисные соединения щелочно-земельных металлов. - М.: Наука, 1983 - 136 с].

Продукт, полученный по заявленному способу, содержит 80-88% масс. пероксида бария при выходе 80,0-87,0% от теоретически возможного.

При температуре нагрева азотнокислого бария ниже 750°C и выше 850°C снижается содержание пероксида бария в полученном продукте. Выгрузка при температуре выше 300°C приводит также к снижению содержания пероксида бария. Положительным результатом данного способа является достижение выхода продукта более 80% от теоретически возможного при содержании в продукте основного вещества так же не менее 80%.

Способ поясняется следующими примерами, параметры и результаты которых сведены в Таблицу.

Пример 1

6 г азотнокислого бария помещают в тигель, устанавливают в муфельную печь и нагревают до 750°C. После достижения температуры 750°C тигель выдерживают при этой температуре в печи 60 мин, затем нагрев прекращают. Через 180 минут охлаждения по достижении температуры 20°C продукт вынимают из печи. Общая длительность процесса с учетом времени охлаждения составляет 8,0 часов.

Получают 3,92 г конечного продукта с содержанием пероксида бария 80,6% масс. Выход продукта составляет 80,9% от теоретически возможного.

Пример 2

Опыт проводят при температурах нагрева и температуре выгрузки, как в примере 1, но увеличивая время выдержки до 120 мин. Получают 3,83 г конечного продукта с содержанием пероксида бария 86,0% масс. Выход продукта составляет 84,2% от теоретически возможного.

Пример 3

Опыт проводят при температуре нагрева и времени выдержки, как в примере 2, но повышая температуру выгрузки до 300°C. Получают 3,94 г конечного продукта с содержанием пероксида бария 84,0% масс. Выход продукта составляет 84,9% от теоретически возможного.

Пример 4

Опыт проводят, как в примере 1, но повышают температуру нагрева до 800°C при времени выдержки 60 минут с охлаждением в течение 210 минут при температуре выгрузки 300°C. Получают 3,83 г конечного продукта с содержанием пероксида бария 87,7% масс. Выход продукта составляет 86,0% от теоретически возможного.

Пример 5

Опыт проводят при температуре нагрева и времени выдержки, как в примере 4, но снижая температуру выгрузки до 20°C. Получают 3,79 г конечного продукта с содержанием пероксида бария 88,3% масс. Выход продукта составляет 85,9% от теоретически возможного.

Пример 6

Опыт проводят, как в примере 4, но повышают температуру нагрева до 850°C и сокращают время выдержки до 30 мин. Время охлаждения составило 240 минут, температура выгрузки 300°C. Получают 3,92 г конечного продукта с содержанием пероксида бария 86,5% масс. Выход продукта составляет 87,0% от теоретически возможного.

Пример 7

Температуру нагрева и времени выдержки оставляют, как в примере 6, но снижают температуру выгрузки до 20°C. Получают 3,76 г конечного продукта с содержанием пероксида бария 86,0% масс. Выход продукта составляет 82,9% от теоретически возможного.

Пример 8

Проводят нагрев и соблюдают температуру выгрузки, как в примере 6, но увеличивая время выдержки до 60 мин. Получают 3,86 г конечного продукта с содержанием пероксида бария 86,9% масс. Выход продукта составляет 86,0% от теоретически возможного.

Пример 9

Опыт проводят при температуре нагрева, времени выдержки и времени охлаждения, как в примере 8, но снижая температуру выгрузки до 20°C. Получают 3,93 г конечного продукта с содержанием пероксида бария 86,0% масс. Выход продукта составляет 86,7% от теоретически возможного.

Пример 10 (сопоставительный)

Способ проводят при температуре 700°C - ниже установленной, но со временем выдержки 60 мин, при температуре выгрузки 20°C, время охлаждения составило 165 минут. Снизились содержание целевого продукта до 23,1 мас. %, выход продукта 27,6% от теоретически возможного, что хуже результатов, полученных по разработанному способу.

Пример 11 (сопоставительный)

Способ проводят при температуре нагрева 900°C (выше установленной), времени выдержки 60 минут, при времени охлаждения 270 минут и температуре выгрузки 20°C. Содержание целевого продукта составляет 56,6 мас. %, выход продукта 53,8% от теоретически возможного, что хуже результатов, полученных по разработанному способу.

Пример 12 (сопоставительный)

Способ проводят при температуре 800°C, времени выдержки 60 мин, температуре выгрузки 400°C. Содержание целевого продукта составляет 74,4 мас. %, выход продукта 74,0% от теоретически возможного, что ниже результатов разработанного способа.

Пример 13 (сопоставительный)

Способ проводят при температуре нагрева 800°C, времени выдержки 60 мин, более быстром охлаждении - 120 минут при температуре выгрузки 300°C.

Содержание целевого продукта составляет 63,4 мас. %, выход продукта 65,0% от теоретически возможного, что хуже результатов, полученных по разработанному способу.

Установлено, что при более низкой температуре выдержки замедляется процесс разложения нитрата бария, что делает его нетехнологичным. Небольшое время выдержки при достигнутой температуре не способствует полному превращению нитрата в оксид бария, а выгрузка при высокой температуре вызывает осмоление продукта присутствующими в воздухе оксидами углерода, загрязняя продукт.

Таким образом решена задача, стоявшая перед авторами изобретения: разработан простой одностадийный способ получения пероксида бария.

Технико-экономическое преимущество заявляемого способа по сравнению со способом-прототипом заключается в сокращении количества трудоемких технологических операций при получении пероксида бария, снижении продолжительности проведения всего технологического цикла.

Предлагаемый способ прост в осуществлении и может быть реализован на стандартном оборудовании.

Похожие патенты RU2603371C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА БАРИЯ 1991
  • Гитис Эдуард Борисович
  • Алексеева Елена Викторовна
  • Васильева Лидия Федоровна
  • Лисовой Александр Владимирович
  • Юркова Василиса Викторовна
  • Малютин Сергей Андреевич
  • Коршунова Валентина Николаевна
  • Попов Борис Николаевич
  • Эссерт Владимир Клементьевич
  • Змитрович Виктор Семенович
RU2123472C1
СПОСОБ ПОЛУЧЕНИЯ СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ОКСИДА 2017
  • Меркулов Игорь Александрович
  • Тихомиров Денис Валерьевич
  • Жабин Андрей Юрьевич
  • Апальков Глеб Алексеевич
  • Смирнов Сергей Иванович
  • Дьяченко Антон Сергеевич
  • Малышева Виктория Андреевна
  • Алексеенко Владимир Николаевич
  • Волк Владимир Иванович
RU2638543C1
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩЕГО МАТЕРИАЛА MBaCuQ 1996
  • Югай К.Н.
  • Сычев С.А.
  • Скутин А.А.
  • Серопян Г.М.
  • Муравьев А.Б.
RU2104939C1
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ ОКСИДНОГО ГЕКСАГОНАЛЬНОГО ФЕРРИМАГНЕТИКА С W-СТРУКТУРОЙ И МАТЕРИАЛ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2013
  • Найден Евгений Петрович
  • Итин Воля Исаевич
  • Сусляев Валентин Иванович
  • Гынгазов Сергей Анатольевич
  • Журавлев Виктор Алексеевич
  • Суржиков Анатолий Петрович
  • Минин Роман Владимирович
  • Лысенко Елена Николаевна
  • Коровин Евгений Юрьевич
RU2534481C1
СПОСОБЫ ПОЛУЧЕНИЯ ТАНТАЛОВЫХ СПЛАВОВ И НИОБИЕВЫХ СПЛАВОВ 2017
  • Фэджардо, Арнел, М.
  • Фолц, Джон, У.
RU2697122C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДНОГО ГЕКСАГОНАЛЬНОГО ФЕРРИМАГНЕТИКА С W-СТРУКТУРОЙ 2005
  • Итин Воля Исаевич
  • Найден Евгений Петрович
  • Кирдяшкин Александр Иванович
  • Максимов Юрий Михайлович
  • Минин Роман Владимирович
  • Габбасов Рамиль Махмутович
RU2303503C1
Способ получения твердого электролита LiAlTi(PO) для твердотельных литий-ионных аккумуляторов 2023
  • Шиндров Александр Александрович
  • Косова Нина Васильевна
RU2821885C1
СПОСОБ ПРОИЗВОДСТВА ТАНТАЛОВЫХ СПЛАВОВ 2019
  • Фэджардо, Арнел М.
  • Фолц, Iv, Джон У.
RU2770845C2
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА НИТРАТА РОДИЯ 2004
  • Коник К.П.
  • Гроховский С.В.
  • Барабошкин В.Е.
  • Богданов В.И.
  • Гладких Т.А.
  • Федичкин С.А.
RU2265579C1
СПОСОБ ОПРЕДЕЛЕНИЯ РЕНИЯ В МОЛИБДЕНСОДЕРЖАЩИХ МАТЕРИАЛАХ МЕТОДОМ АТОМНО-ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ИНДУКТИВНО-СВЯЗАННОЙ ПЛАЗМОЙ 2011
  • Евдокимова Ольга Викторовна
  • Печищева Надежда Викторовна
  • Шуняев Константин Юрьевич
  • Стасик Анна Александровна
RU2465585C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА БАРИЯ

Изобретение может быть использовано в электровакуумной промышленности, черной металлургии, химической промышленности, в частности в производстве пиротехнических составов. Способ получения пероксида бария включает нагревание азотнокислого бария с последующим охлаждением и выгрузкой. Азотнокислый барий нагревают до температуры 750-850°С, выдерживают при этой температуре 30-120 минут. Затем нагрев прекращают и выгружают пероксид бария после охлаждения до температуры не выше 300°С. Охлаждение проводят в течение не менее 180 минут. Изобретение позволяет сократить количество трудоемких технологических операций при получении пероксида бария, уменьшить продолжительность технологического процесса, получить выход продукта более 80% при содержании в продукте основного вещества не менее 80%. 1 табл., 13 пр.

Формула изобретения RU 2 603 371 C1

Способ получения пероксида бария, включающий нагревание азотнокислого бария с последующим охлаждением и выгрузкой, отличающийся тем, что азотнокислый барий нагревают до температуры 750-850°С, выдерживают при этой температуре 30-120 минут, затем нагрев прекращают и выгружают пероксид бария после охлаждения до температуры не выше 300°С, причем охлаждение проводят не менее 180 минут.

Документы, цитированные в отчете о поиске Патент 2016 года RU2603371C1

ROPP R.C., Encyclopedia of the Alkaline Earth Compounds, Elsevier, 2012, p
Камневыбирательная машина 1921
  • Гаркунов И.Г.
SU222A1
СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА БАРИЯ 1991
  • Гитис Эдуард Борисович
  • Алексеева Елена Викторовна
  • Васильева Лидия Федоровна
  • Лисовой Александр Владимирович
  • Юркова Василиса Викторовна
  • Малютин Сергей Андреевич
  • Коршунова Валентина Николаевна
  • Попов Борис Николаевич
  • Эссерт Владимир Клементьевич
  • Змитрович Виктор Семенович
RU2123472C1
Способ получения перекиси бария 1978
  • Осыка Виктор Федорович
  • Савостьянов Николай Иванович
  • Кочеткова Ираида Александровна
  • Михайлов Федор Кондратьевич
SU765208A1
Способ определения координат точек надира 1956
  • Гебгарт Я.И.
SU113457A1
Устройство для измерения скорости раскрытия трещины 2023
  • Кизеветтер Дмитрий Владимирович
  • Кривошеев Сергей Иванович
  • Магазинов Сергей Геннадьевич
  • Малюгин Виктор Иванович
RU2805128C1
US 4427644 A1, 24.01.1984
ПОЗИН М.Е., Технология минеральных солей, Ленинград, Химия, 1974, ч
I, сс
Способ получения сульфокислот из нефтяных дестиллатов, минеральных масел, парафина или церезина, обработанных серною кислотою 1912
  • Петров Г.С.
SU460A1

RU 2 603 371 C1

Авторы

Артюхин Олег Иванович

Дегтярев Анатолий Яковлевич

Дубровин Николай Иванович

Карташов Юрий Иванович

Лунев Валентин Дмитриевич

Мурина Ася Федоровна

Петрова Ирина Сергеевна

Даты

2016-11-27Публикация

2015-09-10Подача