СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ВОЛОКНИСТОГО АДСОРБЕНТА Российский патент 2016 года по МПК C08L97/00 D01F6/54 D01F8/00 

Описание патента на изобретение RU2604620C1

Предложение относится к области получения углеродного адсорбента, синтезированного путем карбонизации волокнистого прекурсора на основе композита гидролизный лигнин-полиакрилонитрил в качестве исходного материала для поглощения антропогенных отходов производства химической, деревоперерабатывающей промышленности и сельского хозяйства.

В настоящее время известны методы получения углеродных адсорбентов на основе гидролизного лигнина и его смесей с некоторыми органическими соединениями. Наиболее близким по сущности является способ получения волокнистого сорбента на основе щелочного гидролизного лигнина и полиэтиленоксида (Т.Н. Шендрик, В.В. Симонова, В.А. Кучеренко, Л.В. Пащенко, Т.В. Хабарова // Хим. тв. топлива. 2007, №1, с. 44-50).

Существенными и очевидными недостатками указанного прототипа являются следующие: отсутствие процесса карбонизации волокнообразующих композитов, полученных из смеси гидролизного лигнина; способ основан на использовании механической смеси гидролизного лигнина с синтетическими полимерами, что нарушает гомогенность реакционной массы и приводит к расслоению различных полимерных фаз по мере увеличения содержания лигнина в формовочной массе исходной смеси. Применение токсичных растворителей (разбавителей) при приготовлении исходной смеси резко ограничивает экологическую и технологическую безопасность процесса получения смесевых волокон и недопустимы в производстве биогенной продукции. Этот способ получения композитных волокон не ориентирован на производство адсорбентов в виду повышенной токсичности летучих продуктов при проведении карбонизации композитных прекурсоров. При этом процесс карбонизации по прототипу усложнен ввиду использования нагрева композиции, требующего дополнительной вытяжки (вентиляции) и дезактивации парогазовых выделений в ходе нагревания исходных материалов. Недостатки, относящиеся к упомянутому выше прототипу, связаны со следующими важнейшими прикладными направлениями: содержание в композитном волокне лигнина ограничено пределом 45%. В прототипе технологическая схема использования лигнина опирается на органические токсичные растворители, недопустимые для работы с биогенной продукцией, нацеленной на биоочистку объемных и поверхностных вод. Предлагаемый в прототипе способ формования волокон основан на использовании экстрактов сточных вод, загрязненных множественными антропогенными отходами, при очистке которых требуется усложненная многоступенчатая технология.

Технической задачей и положительным результатом заявляемого способа является получение углеродных адсорбентов путем активационной карбонизации волокнистых прекурсоров на основе гидролизного лигнина и полиакрилонитрила с высоким содержанием гидролизного лигнина в виде сополимера с полиакрилонитрилом, полученного способом «мокрого» формования из раствора диметилсульфоксида. Это позволяет получать адсорбенты на основе отходов деревоперерабатывающего производства в относительно больших количествах (до 80%), которые благодаря наличию в композите полиакрилонитрила обеспечивают получение формостойких волокон, обладающих повышенной термостойкостью и прочностью. Отсутствие вредных растворителей обеспечивают экологическую безопасность сорбентов и позволяет обеспечить 80-процентное использование, что резко повышает количество утилизируемого отхода производства. Предложенный способ утилизации лигнина относится к техническому неочищенному продукту, содержащему вредные примеси, ликвидация которых приводит к положительному техногенному эффекту, так как способ основан на использовании воды и диметилсульфоксида, пригодных для фармацевтических производств. При этом очистка лигнина осуществляется многократно в одной промывке без использования специальных приспособлений и экстрагентов. А при карбонизации волокон в качестве активатора процесса используется водяной пар.

Указанная задача и технический результат достигается в способе получения композиционного волокнистого адсорбента путем проведения активационной карбонизации композитного волокна гидролизный лигнин-полиакрилонитрил при соотношении исходных компонентов от 80:20 до 50:50 по массе. Процесс карбонизации предусматривает нагрев волокон в инертной атмосфере (азот) с постоянной скоростью 15 град·мин-1 до температуры 800°С с последующим охлаждением карбонизованных волокон до комнатной температуры в атмосфере азота со скоростью тока газа 50 см3·мин-1.

Активация композитных волокон на стадии карбонизации предусматривает комплексное воздействие высоких температур и химических агентов для обеспечения требуемой полидисперсности адсорбентов и выбора необходимого размера пор и их количества, исчисляемого величинами удельной поверхности и удельного объема поглощаемого адсорбента. Требуемые показатели достигаются путем варьирования продолжительностью и температурой нагрева композитных волокнистых прекурсоров и их активацией регулируемым количеством водяного пара, подаваемого в пиролитический реактор в процессе карбонизации волокнистого композита.

Более полно способ излагается на следующем примере.

500 мг измельченного волокна композита гидролизный лигнин-полиакрилонитрил с массовым соотношением 80:20 помещали в пиролитический кварцевый стакан со шлифом, соединенным с коммуникацией подачи азота и отводной трубкой с поглотительной системой. После продува током азота 50 см3·мин-1 при комнатной температуре около 22°С включали обогрев пиролизера со скоростью подъема температуры 15 град·мин-1. После достижения температуры 800°С образец прогревали при этой температуре в течение 0,5 час, выключали обогрев и охлаждали пиролизер до комнатной температуры, поддерживая ток азота на постоянном уровне. После остывания образец извлекали из пиролизера, определяли количество карбонизованного остатка, для которого проводили измерения адсорбционных характеристик: удельная поверхность (м2·г-1) и сорбционная емкость (см3·г-1), общий объем и распределение пор по метиленовому голубому, БЭТ, подвергали электронной микроскопии, определяли индексы термостойкости по ТГА и ДСК, прочности на разрыв, подвергали элементному анализу и ИК-спектроскопии.

Таким образом, разработанный способ позволяет получать адсорбенты на основе отходов деревообрабатывающего производства в относительно больших количествах (до 80%), которые благодаря наличию в композите полиакрилонитрила обеспечивают образование формостойких волокон, обладающих повышенной термостойкостью и прочностью. Отсутствие вредных растворителей повышает экологическую безопасность сорбентов.

Похожие патенты RU2604620C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО ВОЛОКНА НА ОСНОВЕ ГИДРОЛИЗНОГО ЛИГНИНА С ПОЛИАКРИЛОНИТРИЛОМ 2012
  • Сазанов Юрий Николаевич
  • Добровольская Ирина Петровна
  • Спирина Тамара Никитична
  • Попрядухин Павел Васильевич
  • Юдин Владимир Евгеньевич
  • Сапрыкина Наталья Николаевна
  • Попова Елена Николаевна
  • Федорова Галина Николаевна
  • Куликова Евгения Михайловна
  • Сумерский Иван Викторович
  • Крутов Степан Минаевич
  • Новосёлова Анна Валентиновна
RU2526380C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО ВОЛОКНА НА ОСНОВЕ ГИДРОЛИЗНОГО ЛИГНИНА С ПОЛИАКРИЛОНИТРИЛОМ 2016
  • Лысенко Александр Александрович
  • Свердлова Наталия Ивановна
  • Виноградова Людмила Егоровна
  • Сазанов Юрий Николаевич
  • Крутов Степан Минаевич
  • Штягина Людмила Михайловна
RU2621758C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО ВОЛОКНА 1996
  • Бирюков В.П.
  • Плотников А.М.
  • Кузнецова С.Л.
RU2130516C1
Способ получения волокнистых высокотемпературных хемосорбентов углекислого газа 2022
  • Родаев Вячеслав Валерьевич
  • Разливалова Светлана Сергеевна
  • Васюков Владимир Михайлович
RU2785814C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО АДСОРБЕНТА 2010
  • Иванов Иван Петрович
  • Микова Надежда Михайловна
  • Чесноков Николай Васильевич
  • Кузнецов Борис Николаевич
RU2436625C1
КОМПОЗИТ, СОДЕРЖАЩИЙ КАРБОНИЗОВАННЫЕ БИОПОЛИМЕРЫ И УГЛЕРОДНЫЕ НАНОТРУБКИ 2008
  • Кадек Мартин
  • Вахтлер Марио
  • Раймундо-Пинеро Энкарнасион
  • Беген Франсуа
RU2447531C2
Способ получения активного угля 1990
  • Акулова Алла Николаевна
  • Кузнецов Леонид Николаевич
  • Масютин Николай Николаевич
  • Соколов Владимир Сергеевич
  • Тынкасов Сергей Анатольевич
SU1766843A1
Способ получения углеродных волокнистых материалов из гидратцеллюлозных волокон 2017
  • Бейлина Наталия Юрьевна
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадиевич
RU2671709C1
КОМПОЗИЦИОННЫЙ ТЕРМОСТОЙКИЙ ТРИБОТЕХНИЧЕСКИЙ МАТЕРИАЛ 2004
  • Струк Василий Александрович
  • Кравченко Виктор Иванович
  • Костюкович Геннадий Александрович
  • Авдейчик Сергей Валентинович
RU2268273C1
Способ получения углеродного нетканого волокнистого материала для медицины 2018
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадиевич
RU2714384C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ВОЛОКНИСТОГО АДСОРБЕНТА

Изобретение относится к области получения углеродных адсорбентов. Описан способ получения композитного волокнистого адсорбента, характеризующийся тем, что в качестве исходных компонентов берут гидролизный лигнин и полиакрилонитрил, готовят их смесь при соотношении 80:20 по массе, эту смесь помещают в пиролизер, осуществляют его продув током азота, после этого ведут прогрев смеси в пиролизере со скоростью подъема температуры 15 град·мин-1 до достижения температуры смеси 800°C, поддерживают эту температуру в течение 0,5 часа, прекращают прогрев и ведут охлаждение карбонизованных волокон до комнатной температуры в атмосфере азота со скоростью его тока 50 см3·мин-1. Технический результат: получение адсорбента на основе отходов деревоперерабатывающего производства в больших количествах, обладающих повышенной термостойкостью и прочностью.

Формула изобретения RU 2 604 620 C1

Способ получения композитного волокнистого адсорбента, характеризующийся тем, что в качестве исходных компонентов берут гидролизный лигнин и полиакрилонитрил, готовят их смесь при соотношении 80:20 по массе, эту смесь помещают в пиролизер, осуществляют его продув током азота, после этого ведут прогрев смеси в пиролизере со скоростью подъема температуры 15 град·мин-1 до достижения температуры смеси 800°C, поддерживают эту температуру в течение 0,5 часа, прекращают прогрев и ведут охлаждение карбонизованных волокон до комнатной температуры в атмосфере азота со скоростью его тока 50 см3·мин-1.

Документы, цитированные в отчете о поиске Патент 2016 года RU2604620C1

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО ВОЛОКНА НА ОСНОВЕ ГИДРОЛИЗНОГО ЛИГНИНА С ПОЛИАКРИЛОНИТРИЛОМ 2012
  • Сазанов Юрий Николаевич
  • Добровольская Ирина Петровна
  • Спирина Тамара Никитична
  • Попрядухин Павел Васильевич
  • Юдин Владимир Евгеньевич
  • Сапрыкина Наталья Николаевна
  • Попова Елена Николаевна
  • Федорова Галина Николаевна
  • Куликова Евгения Михайловна
  • Сумерский Иван Викторович
  • Крутов Степан Минаевич
  • Новосёлова Анна Валентиновна
RU2526380C2
WO 2013020919 A1, 14.02.2013
US 20140302315 A1, 09.10.2014.

RU 2 604 620 C1

Авторы

Сазанов Юрий Николаевич

Добровольская Ирина Петровна

Иванова Елена Андреевна

Попрядухин Павел Васильевич

Панкова Галина Ароновна

Сапрыкина Наталья Николаевна

Ипатова Елена Владимировна

Федорова Галина Николаевна

Куликова Евгения Михайловна

Крутов Степан Минаевич

Даты

2016-12-10Публикация

2015-07-15Подача