Способ получения нанокапсул витаминов группы В в геллановой камеди Российский патент 2017 года по МПК A61K9/51 A61K31/525 A61K47/36 A61J3/07 B82B3/00 

Описание патента на изобретение RU2616514C2

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК А61К 009/50, А61К 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул витаминов группы В, отличающимся тем, что в качестве оболочки нанокапсул используется геллановая камедь, а в качестве ядра - витамины (тиамина, рибофлавина, пиридоксина, фолиевой кислоты и карнитина) при получении нанокапсул методом осаждения нерастворителем с применением ацетонитрила в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием ацетонитрила в качестве осадителя, а также использование геллановой камеди в качестве оболочки частиц и витаминов группы В - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул витаминов группы В.

ПРИМЕР 1 Получение нанокапсул тиамина (B1), соотношение ядро:оболочка 1:3

100 мг тиамина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул тиамина (В1), соотношение ядро:оболочка 1:1

100 мг тиамина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул рибофлавина (В2), соотношение ядро:оболочка 1:3

100 мг рибофлавина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4 Получение нанокапсул рибофлавина (В2), соотношение ядро:оболочка 1:1

100 мг рибофлавина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5 Получение нанокапсул пиридоксина (В6), соотношение ядро:оболочка 1:3

100 мг пиридоксина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6 Получение нанокапсул пиридоксина (В6), соотношение ядро:оболочка 1:1

100 мг пиридоксина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7 Получение нанокапсул фолиевой кислоты (В9), соотношение ядро:оболочка 1:3

100 мг фолиевой кислоты добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 8 Получение нанокапсул фолиевой кислоты (В9), соотношение ядро:оболочка 1:1

100 мг фолиевой кислоты добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 9 Получение нанокапсул карнитина (В11), соотношение ядро:оболочка 1:3

100 мг карнитина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 10 Получение нанокапсул карнитина (В11), соотношение ядро:оболочка 1:1

100 мг карнитина добавляют в суспензию геллановой камеди в бензоле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 11 Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2616514C2

название год авторы номер документа
Способ получения нанокапсул витаминов группы В 2016
  • Кролевец Александр Александрович
RU2646474C1
Способ получения нанокапсул витаминов группы В в каппа-каррагинане 2016
  • Кролевец Александр Александрович
RU2618449C1
Способ получения нанокапсул L-аргинина в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2626831C2
Способ получения нанокапсул бетулина в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2622750C1
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция 2016
  • Кролевец Александр Александрович
RU2640489C1
Способ получения нанокапсул лекарственных растений, обладающих седативным действием 2016
  • Кролевец Александр Александрович
RU2631479C1
Способ получения нанокапсул унаби в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2624530C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ ГРУППЫ В 2015
  • Кролевец Александр Александрович
RU2605596C1
Способ получения нанокапсул сухого экстракта барбариса в гуаровой камеди 2018
  • Кролевец Александр Александрович
RU2674661C1
Способ получения нанокапсул семян чиа (Salvia hispanica) в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2633747C1

Иллюстрации к изобретению RU 2 616 514 C2

Реферат патента 2017 года Способ получения нанокапсул витаминов группы В в геллановой камеди

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул витаминов группы В. Способ характеризуется тем, что в качестве оболочки используется геллановая камедь, при этом витамин группы В добавляют в суспензию геллановой камеди в бензоле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют ацетонитрил, при массовом соотношении ядро:оболочка 1:3 или 1:1, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 4 ил., 11 пр.

Формула изобретения RU 2 616 514 C2

Способ получения нанокапсул витаминов группы В в геллановой камеди, характеризующийся тем, что в качестве оболочки используется геллановая камедь, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию геллановой камеди в бензоле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют ацетонитрил, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2017 года RU2616514C2

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2555556C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2557900C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В ГЕЛЛАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2559577C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2562561C1
А.А
Кролевец и др
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
С
Спускная труба при плотине 0
  • Фалеев И.Н.
SU77A1
WO 2004064544 A1, 05.08.2004
Чуешов В.И
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Передвижная комнатная печь 1922
  • Лендер Ф.Ф.
SU383A1

RU 2 616 514 C2

Авторы

Кролевец Александр Александрович

Даты

2017-04-17Публикация

2015-09-22Подача