Изобретение относится к комбинированным методам обработки, сочетающим механическое и электрохимическое воздействие на обрабатываемую заготовку, и может быть использовано при алмазно-электрохимическом шлифовании деталей из труднообрабатываемых сталей и сплавов.
Известен способ комбинированной обработки в среде электролита, когда периодически по сигналу, характеризующему достижение рабочей поверхностью инструмента оптимальных режущих свойств, уменьшают напряжение до значений, не достигающих напряжения горения дуги [А.С. СССР №560725, МПК B23P 1/10. Способ комбинированной обработки металлов токопроводящим абразивным инструментом. Бюл. №21, 1977].
Однако в известном способе в периоды действия напряжения, превышающего напряжение горения дуги, наблюдаются засаливание и повышенный износ инструмента.
Известны также способы алмазно-электрохимического шлифования инструментом на токопроводящей связке [А.С. СССР №1000207, МПК B23P 1/04, В23Р 1/10. Способ алмазно-электрохимического шлифования. Бюл.№8, 1983; А.С. СССР №1576261. МПК В23Н 5/06, Способ электрохимического шлифования. Бюл. №25, 1990], в которых алмазно-электрохимическое шлифование проводится короткими электрическими разрядами или способ алмазно-электрохимического шлифования [А.С. СССР №1590237. МПК B23H 5/06. Способ электрохимического шлифования. Бюл. №33, 1990] с периодическим изменением напряжения.
Известен способ электрохимического шлифования поверхностей деталей [А.С. СССР №1071383, МПК В23Р 1/10. Устройство для электрохимического шлифования. Бюл. №5, 1984], использующий систему подвода электролита и электрод-инструмент, выполненный из отдельных пластин, связанных с держателем.
Наиболее близким по технической сущности к предлагаемому изобретению является способ алмазно-электрохимического шлифования вращающимся алмазным кругом на металлической связке, включающий наложение активирующего воздействия на межэлектродный промежуток [А.С. СССР №1756046. МПК B23H 5/06. Способ алмазно-электрохимического шлифования. Бюл. 31, 1992 г.]. В известном способе, в качестве активирующего воздействия на межэлектродный промежуток между вращающимся алмазным кругом и обрабатываемой деталью производят наложение основного и вспомогательного магнитного поля.
Однако, как прототип [А.С. СССР №1756046], так и остальные известные способы алмазно-электрохимического шлифования не обеспечивают защиту от засаливаемости алмазного круга и улучшение электрического контакта в системе «инструмент-электролит-деталь», что отрицательно сказывается на качестве и производительности обработки деталей, а также стойкости круга.
Техническим результатом предлагаемого изобретения является увеличение стойкости алмазного шлифовального электрода-инструмента, а также повышение качества и производительности обработки деталей.
Технический результат достигается за счет того, что в способе алмазно-электрохимического шлифования вращающимся алмазным кругом на металлической связке, включающем наложение активирующего воздействия на межэлектродный промежуток, в отличие от прототипа, в качестве активирующего воздействия используются ультразвуковые колебания (УЗК), причем чередуют ультразвуковые колебания в низкочастотном и среднечастотном ультразвуковых диапазонах, выбирая низкочастотный диапазон частот в пределах 15-50 кГц с интенсивностью 2-5 Вт/см2, а среднечастотный диапазон в пределах частот 100-300 кГц с интенсивностью в пределах 0,5-5 Вт/см2.
Кроме того, в заявляемом способе могут использоваться следующие дополнительные приемы: дополнительно на межэлектродный промежуток производят наложение магнитного поля напряженностью от 1,5⋅104 А/м до 5,5 А/м; чередуют ультразвуковые колебания в низкочастотном и среднечастотном ультразвуковых диапазонах через каждые 10-40 оборотов алмазного круга.
При наложении УЗК происходит кавитационное воздействие как на обрабатываемую поверхность, так и на инструмент. При этом инструмент очищается от налипаемых продуктов, с обрабатываемой поверхности удаляется часть тонкой пленки, образующейся в результате электрохимического (ЭХ) воздействия, что приводит к интенсификации процесса, за счет улучшения электрического контакта в межэлектродном промежутке между деталью и инструментом. При этом чередование среднечастотных и низкочастотных УЗК позволяет существенно повысить эффективность обработки за счет удаления загрязнений на инструменте, в силу различия результатов воздействия низкочастотных и среднечастотных ультразвуковых импульсов на инструмент и образующуюся в результате ЭХ воздействия пленку.
Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представленными ниже примерами.
Заявляемый способ осуществляется следующим образом. Алмазный круг приводится во вращение приводом. В зазор между алмазным кругом и обрабатываемой деталью подается электролит, который захватывается кругом и попадает в межэлектродный промежуток (МЭП). В МЭП подается напряжение от источника технологического напряжения и от источников среднечастотных и низкочастотных УЗК поочередно налагаются ультразвуковые колебания. В области МЭП возникают кавитационные процессы поочередно от среднечастотных и низкочастотных УЗК. Введение поочередных среднечастотных и низкочастотных УЗК положительно сказывается на увеличении стойкости алмазного шлифовального электрода-инструмента, а также повышении качества и производительности обработки деталей. При введении в МЭП чередующихся среднечастотных и низкочастотных УЗК происходит эффективная очистка поверхности инструмента от различного рода налипаний, улучшается удаление продуктов обработки и загрязнений из МЭП, происходит частичное разрушение анодной пленки, возникающей на поверхности обрабатываемой детали в процессе электрохимической обработки (ЭХО).
Для оценки производительности и качества обработки были проведены следующие испытания. Образцы из труднообрабатываемых сплавов (ВК-8,Т14К8, ЮН15ДК35БА) были подвергнуты обработке как по способу-прототипу [А.С. СССР №1756046], согласно приведенных в способе-прототипе условий и режимов обработки, так и по предлагаемому способу. В качестве электролитов использовали: 1 электролит: водный раствор 2% моноэтаноламин, 2% натрий азотистокислый, 2% натрий фосфорнокислый; 2 электролит: водный раствор 3% натрий азотистокислый, 3% натрий фосфорнокислый; 3-4% моноэтаноламин; 3 электролит: водный раствор 4% натрий азотистокислый, 4% натрий фосфорнокислый; 4-5% моноэтаноламин. Режимы обработки: скорость вращения алмазного круга: 20 м/с, 25 м/с, 30 м/с, 35 м/с, 40 м/с, 45 м/с; глубина шлифования: 0,8 мм, 1,2 мм, 1,4 мм; подача электролита: 6 л/мин, 8 л/мин, 10 л/мин, 12 л/мин; напряжение холостого хода 10 B, 12 B, 14 B. Оценку производили по производительности процесса, по величине износа инструмента и оценке его засаливания при обеспечении заданной шероховатости поверхности обрабатываемой детали (Ra=0,32÷0,63 мкм).
Режимы обработки образцов по предлагаемому способу.
Чередование ультразвуковых колебаний в низкочастотном и среднечастотном ультразвуковых диапазонах - эффект наблюдается при любых частотах чередования; наилучший результат при чередовании через каждые 10-40 оборотов алмазного круга.
Низкочастотный диапазон частот: 12 кГц - неудовлетворительный результат (Н.Р.), 15 кГц - удовлетворительный результат (У.Р.), 20 кГц - (У.Р.), 30 кГц - (У.Р.), 40 кГц - (У.Р.), 50 кГц - (У.Р.), 60 кГц - (Н.Р.). (За удовлетворительный результат принимался результат, при котором проявлялись эффекты предлагаемого способа: минимальное засаливание инструмента, повышение производительности не менее чем на 15%, отсутствовали дефекты на обработанной поверхности, происходило снижение потребляемой энергии не менее чем на 8%), с интенсивностью: 1,5 Вт/см2 - (Н.Р.), 2 Вт/см2 - (У.Р.), 3 Вт/см2 - (У.Р.), 4 Вт/см2 - (У.Р.), 5 Вт/см2 - (У.Р.), 7 Вт/см2 - (Н.Р.).
Среднечастотный диапазон частот: 70 кГц - (Н.Р.), 100 кГц - (У.Р.), 200 кГц - (У.Р.), 300 кГц - (У.Р.), 350 кГц - (Н.Р.), с интенсивностью: 0,3 Вт/см2 - (Н.Р.), 0,5 Вт/см2 - (У.Р.), 1,5 Вт/см2 - (У.Р.), 2,5 Вт/см2 - (У.Р.), 3,5 Вт/см2 - (У.Р.), 5 Вт/см2 - (У.Р.), 7 Вт/см2 - (Н.Р.).
Сравнительные испытания предлагаемого способа алмазно-электрохимического шлифования по сравнению со способом прототипом показали повышение производительности обработки в 1,2-1,3 раза, уменьшение засаливаемости инструмента на 80-85%, снижение энергозатрат на ведение процесса на 9-14%, при обеспечении качества обрабатываемой поверхности или некоторого его улучшения.
Таким образом, проведенные сравнительные испытания показали, что применение в способе алмазно-электрохимического шлифования вращающимся алмазным кругом на металлической связке следующих приемов: наложение активирующего воздействия на межэлектродный промежуток; в качестве активирующего воздействия используется ультразвуковые колебания; чередование ультразвуковых колебаний в низкочастотном и среднечастотном ультразвуковых диапазонах, выбирая низкочастотный диапазон частот в пределах 15-50 кГц с интенсивностью 2-5 Вт/см2, а среднечастотный диапазон в пределах частот 100-300 кГц с интенсивностью в пределах 0,5-5 Вт/см2, позволяют достичь технического результата предлагаемого изобретения - увеличить стойкость алмазного шлифовального электрода-инструмента, а также повысить качество и производительность обработки деталей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ПОСЛОЙНЫМ ЛАЗЕРНЫМ НАНЕСЕНИЕМ ПОРОШКОВОГО МАТЕРИАЛА | 2013 |
|
RU2550669C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ЛАЗЕРНЫМ ЦИКЛИЧНЫМ НАНЕСЕНИЕМ ПОРОШКОВОГО МАТЕРИАЛА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2550670C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ИЗ ПОРОШКОВОГО МАТЕРИАЛА ЦИКЛИЧНЫМ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СИНТЕЗОМ | 2013 |
|
RU2526909C1 |
СПОСОБ ОБРАБОТКИ ЛОПАТКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2013 |
|
RU2533223C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ ТОРЦА ПЕРА ЛОПАТКИ ТУРБОМАШИНЫ С ФОРМИРОВАНИЕМ ЩЕТОЧНОГО УПЛОТНЕНИЯ | 2010 |
|
RU2479400C2 |
Способ ионного полирования внутренней поверхности детали | 2020 |
|
RU2734179C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВНУТРЕННЕГО КАНАЛА МЕТАЛЛИЧЕСКОЙ ДЕТАЛИ И ЭЛЕКТРОД-ИНСТРУМЕНТ ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2019 |
|
RU2697759C1 |
СПОСОБ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ ОТВЕРСТИЙ МАЛОГО ДИАМЕТРА | 2015 |
|
RU2596567C1 |
СПОСОБ СУХОГО ЭЛЕКТРОПОЛИРОВАНИЯ ДЕТАЛИ | 2020 |
|
RU2730306C1 |
Способ электрополирования детали | 2020 |
|
RU2724734C1 |
Изобретение относится к комбинированным методам обработки, сочетающим механическое и электрохимическое воздействие на обрабатываемую заготовку, и может быть использовано при алмазно-электрохимическом шлифовании деталей из труднообрабатываемых сталей и сплавов. Шлифование осуществляют вращающимся алмазным кругом на металлической связке при активирующем воздействии на межэлектродный промежуток (МЭП). Активирующее воздействие производят путем наложения чередующихся ультразвуковых колебаний в низкочастотном и среднечастотном ультразвуковых диапазонах, при этом выбирают низкочастотный диапазон частот в пределах 15-50 кГц с интенсивностью 2-5 Вт/см2, а среднечастотный диапазон частот в пределах 100-300 кГц с интенсивностью 0,5-5 Вт/см2. В результате увеличивается стойкость алмазного круга, повышаются качество и производительность обработки. 2 з.п. ф-лы.
1. Способ алмазно-электрохимического шлифования детали вращающимся алмазным кругом на металлической связке, включающий активирующее воздействие на межэлектродный промежуток (МЭП) между кругом и обрабатываемой деталью, отличающийся тем, что активирующее воздействия на МЭП производят путем наложения чередующихся ультразвуковых колебаний в низкочастотном и среднечастотном ультразвуковых диапазонах, при этом выбирают низкочастотный диапазон частот в пределах 15-50 кГц с интенсивностью 2-5 Вт/см2, а среднечастотный диапазон частот в пределах 100-300 кГц с интенсивностью 0,5-5 Вт/см2.
2. Способ по п. 1, отличающийся тем, что дополнительно производят наложение магнитного поля на МЭП напряженностью от 1,5⋅104 А/м до 5,5 А/м.
3. Способ по п. 1, отличающийся тем, что чередование ультразвуковых колебаний в низкочастотном и среднечастотном ультразвуковых диапазонах производят через каждые 10-40 оборотов алмазного круга.
Способ алмазно-электрохимического шлифования | 1990 |
|
SU1756046A1 |
Электрофизические и электрохимические методы обработки материалов | |||
/ Под ред | |||
В.П.Смоленцева, т.2, М., Высшая школа, 1983, с | |||
Заслонка для русской печи | 1919 |
|
SU145A1 |
Устройство для размерной электрохимической обработки | 1983 |
|
SU1134335A1 |
US 5062933 A1, 05.11.1991. |
Авторы
Даты
2017-01-10—Публикация
2015-09-29—Подача