КАТАЛИЗАТОР И СПОСОБ ЕГО ПРИМЕНЕНИЯ Российский патент 2017 года по МПК B01J23/745 C09K8/584 

Описание патента на изобретение RU2608192C2

Предлагаемое изобретение относится к области технологических процессов и может быть использовано в горном деле для интенсификации добычи тяжелых высоковязких нефтей, а также в химической, лакокрасочной, текстильной промышленности.

Известен способ [1] получения железооксидного катализатора. Сущностью известного технического решения является получение железооксидного катализатора для процесса термолиза тяжелого углеводородного сырья, позволяющий увеличить выход светлых фракций и не требующий для проведения процесса использования пара или водорода, он представляет собой микросферический магнитный продукт, выделенный из летучих зол от пылевидного сжигания бурого или каменного угля, фракционированный по размеру в диапазоне 0,05-0,40 мм, состоящий на 80-90 масс. % из оксида железа, остальное - оксиды кремния, алюминия, кальция, магния, натрия, калия, марганца, серы, и в котором оксид железа распределен между двумя железосодержащими фазами: 13,0-34,5 масс. % феррошпинели и 35,0-63,0 масс. % гематита.

Недостатками способа [1] являются многостадийность и трудоемкость процесса производства (выделения) катализатора из магнитных концентратов, получаемых сепарацией золы в магнитном поле, а также его (катализатора) неудовлетворительная для практики активность. Кроме того, производство катализатора является весьма энергоемким процессом - требуется высокотемпературное прокаливание продукта в течение длительного времени при использовании его (катализатора) для процесса термолиза тяжелого углеводородного сырья. Недостатки существенно ограничивают область применения способа [1].

Известен способ [2] изготовления катализатора для получения алифатических углеводородов. Сущностью известного технического решения является то, что катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа, отличающийся тем, что он дополнительно содержит оксид калия и оксид алюминия, сформирован in situ непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе оксида углерода или водорода и имеет следующий состав, масс. %:

Fe 87-95 K2O 2-9 Al2O3 1-8

И способ его применения, заключающийся в том, что получение алифатических углеводородов из оксида углерода и водорода в трехфазном реакторе реализуется при повышенной температуре и давлении в присутствии наноразмерных, суспендированных в жидкой углеводородной фазе частиц железосодержащего катализатора, активированного непосредственно в зоне реакции оксидом углерода или водородом.

Недостатками [2] являются невысокая активность катализатора, а также высокие трудо- и времяемкость осуществляемого процесса изготовления катализатора, для получения которого требуется многочасовой подвод оксида углерода или водорода в реакционную среду. Кроме того, для осуществления способа требуется использование дорогостоящих исходных компонентов, что значительно ухудшает общую экономику процесса. Эти недостатки существенно ограничивают область применения известного способа [2].

Наиболее близким по существу заявляемого изобретения прототипом, является способ [3]. Сущностью известного технического решения является получение нефтерастворимого катализатора гидрокрекинга углеводородного сырья, которое состоит из конденсированных ароматических соединений, содержащего растворимый в нефти каталитический комплекс, состоящий из

- первого атома каталитического металла, выбранного из группы, состоящей из металлов группы VIB, металлов группы VIIIB и их комбинаций;

- второго атома каталитического металла, выбранного из группы, состоящей из металлов группы VIB, металлов группы VIIIB и их комбинаций; и

- органического лиганда, связанного с первым и вторым атомом каталитического металла, в котором органический лиганд включает ароматическую группу.

Недостатком прототипа [3] является низкая результативность действия (эффективность) катализатора вследствие его ограниченной растворимости в типичных углеводородных флюидах природных месторождений полезных ископаемых - катализатор растворяется только в нефти и не растворяется в воде - непременном компоненте процесса добычи нефти, например - воды, используемой для вытеснения нефти из породы, низкая текучесть нефти в пласте вследствие его (катализатора) низкого каталитического действия, узкая область применения, т.к. известное изобретение применяется исключительно для целей повышения нефтеотдачи и не применимо в качестве поверхностно-активного вещества (далее ПАВ). Указанные недостатки существенно ограничивают область применения прототипа.

Целью предлагаемого изобретения является:

- расширение перечня катализаторов целевого назначения - получение нефте- и водорастворимого катализатора,

- снижение вязкости и повышение текучести нефти в пласте,

- расширение области применения катализаторов, а именно возможность использования заявляемого изобретения в качестве ПАВ в различных областях техники, например в лакокрасочной промышленности, фармацевтике и т.д.

- повышение рентабельности процесса добычи и транспортировки нефти.

Цели достигают тем, что создают с неприсущей традиционным видам катализаторов крекинга уникальной способностью катализатор нефтеводорастворимый путем осуществления реакции взаимодействия при нагревании лигандообразующего компонента и каталитической основы - оксида металла группы железа, в качестве лигандообразующего компонента используют алкилбензолсульфокислоту. В качестве оксида металла используют оксид железа(III)-Fe2O3, реакцию осуществляют в температурном диапазоне от плюс 50° до +200°С. В качестве оксида металла используют двойной оксид железа FeO⋅Fe2O3, реакцию осуществляют в температурном диапазоне от плюс 50° до +200°С. Мольное соотношение между алкилбензолсульфокислотой и оксидом железа(III)-Fe2O3 выполняют в диапазоне от 50:1 до 1:1. Мольное соотношение между алкилбензолсульфокислотой и двойным оксидом железа FeO⋅Fe2O3 выполняют в диапазоне от 40:1 до 1:1. Катализатор растворяют в рабочей жидкости и вводят в пласт. В качестве рабочей жидкости для растворения катализатора используют полярный растворитель. В качестве рабочей жидкости для растворения катализатора используют неполярный растворитель. Растворенный в рабочей жидкости катализатор вводят в пласт, исходя из расчета массового расхода катализатора в рабочей жидкости в диапазоне от 1⋅10-3 до 2⋅100% от ожидаемого количества добываемой нефти конкретного месторождения. В качестве полярного растворителя используют воду. В качестве неполярного растворителя используют органический растворитель.

Указанная область массовой концентрации (катализатора) может быть расширена. Однако превышение концентрации выше указанного максимума будет экономически нецелесообразным, хотя и будет способствовать увеличению каталитического действия заявляемого изобретения; в свою очередь использование концентраций менее представленных минимальных значений не приведет к заметному повышению эффективности катализатора.

Способность заявляемого катализатора растворяться в полярных и неполярных растворителях обусловлена амфифильным строением катализатора. Катализатор является ПАВом за счет того, что его (катализатора) молекулы имеют в своем составе полярную гидрофильную часть (функциональные группы -SOOOH, чаще соли -SOOOMe, где Me- атом металла) и неполярную гидрофобную часть - длинный углеводородный радикал с длиной цепи С1214.

Заявляемое изобретение осуществляют, например, следующим путем.

Берут известные составляющие (компоненты) катализатора, например каталитическую основу - оксид железа(III)-Fe2O3 в количестве 20 г и лигандообразующий компонент - алкилбензолсульфокислоту в количестве 200 г.

Алкилбензолсульфокислоту помещают в термостойкую стеклянную емкость, при интенсивном перемешивании, например - магнитной мешалкой, нагревают, например - до температуры в диапазоне от плюс 50° до +200°С, например, при атмосферном давлении.

В нагретую алкилбензолсульфокислоту добавляют порошкообразный оксид железа(III)-Fe2O3, перемешивают, получают суспензию. И в последующем сохраняя температурный режим (от +50° до +200°С), синтезируя катализатор, суспензию выдерживают в емкости, например - в течение от 0,5 до 10,0 часов, и получают заявляемый катализатор. Температуру и продолжительность нагрева выбирают, исходя из особенностей характерных параметров нефти конкретных месторождений, например - вязкости, содержания парафина, асфальтенов и т.д. Для применения на различных месторождениях создают линейку катализаторов заявляемого состава, но приготовленных при экспериментально подобранной температуре и продолжительности нагрева при синтезировании катализатора. Таким путем получают конкретный вариант катализатора, оптимального для применения с наибольшей результативностью при добыче нефти конкретного месторождения с учетом природы углеводородов и породы пласта, которые могут иметь различную природу, например - карбонатное, глинистое базальтовое и т.п. происхождение.

После завершения синтеза реакционную массу охлаждают до комнатной температуры и получают готовый к применению катализатор. Преимущественно готовый катализатор представляет собой вязкую, нетекучую массу красно-коричневого цвета, растворимую в полярных и неполярных средах, например - нефти, нефтепродуктах, органических растворителях, воде.

Заявляемый катализатор применяют, например, следующим путем.

Берут готовый катализатор. Берут емкость с определенным количеством растворителя, например - дизельного топлива. В емкость с растворителем вводят катализатор, перемешивают и добиваются полного растворения катализатора в растворителе при температуре окружающей среды. Получают готовый к применению раствор катализатора, пригодный к использованию для тех или иных нефтяных месторождений с учетом физико-химической природы как флюидов, так и породы пласта.

Для повышения нефтеотдачи пласта через закачивающую скважину в пласт закачивают раствор катализатора в рабочей жидкости, например - в дизельном топливе. В качестве растворителя могут быть использованы и другие свойственные флюидам месторождений полярные и неполярные жидкости, например - товарная нефть, керосин, бензин, вода.

Концентрацию катализатора в рабочей жидкости выбирают опытным путем, с учетом переменных характеристик (коллекторских свойств) нефтеносного пласта породы конкретного месторождения добываемого углеводородного энергоносителя, например - материала породы, его проницаемости, пористости и трещиноватости, вязкости содержащейся в пласте нефти, температуры пласта. Оптимальное соотношение количества катализатора к количеству растворителя составляет от 1:1 до 1:500 в зависимости от свойств нефти конкретного месторождения. Массовый расход катализатора в рабочей жидкости составляет в диапазоне от 1⋅10-3 до 2⋅10° % от ожидаемого количества добываемой нефти конкретного месторождения и наличия или отсутствия паротеплового воздействия на пласт в технологическом процессе добычи. При наличии паротеплового воздействия на продуктивный пласт выбирают меньшую концентрацию катализатора.

Действенность заявляемого катализатора оценена применительно к образцу нефти Ромашкинского месторождения в Татарстане, в условиях, имитирующих производственный процесс нефтедобычи с применением паротепловой обработки продуктивного пласта, содержащего флюид в виде эмульсии нефти в воде. В исследуемую нефть при температуре применяемого в промысловых условиях паротеплового воздействия от плюс 180 до +300°С в виде раствора в петролейном эфире вводят катализатор из расчета 0,1-1,0% масс. на нефть. В опытах при концентрации катализатора в растворе 1,0% масс. на нефть при массовом соотношении 1:14 (раствор катализатора: нефть) после 6-ти часовой обработки нефти при температуре +250°С и давлении 6,5 МПа с использованием реактора высокого давления Parr Instrument (г. Молин, Иллинойс, США) доля асфальтенов снизилась от 1 до 5%, против доля смол снизилась от 3 до 10%, а доля легких углеводородов увеличилась от 4 до 15%. Вязкость снизилась на 60%. То есть, воздействие заявляемого катализатора на нефть приводит к изменению физико-химических свойств нефти, а именно - снижению доли тяжелых фракций и увеличению доли легких фракций, существенному снижению вязкости и повышению текучести этой нефти. Произошедшие изменения являются фактором, способствующим повышению результативности процесса добычи содержащейся в продуктивном пласте нефти в условиях реальных производственных процессов нефтедобычи. Применение заявляемого катализатора способствует достижению цели заявляемого изобретения - повышению нефтеотдачи пласта, повышению суточного дебита и рентабельности процесса добычи и транспортировки нефти.

Аналогичные результаты - снижение вязкости и повышение текучести нефти под воздействием заявляемого катализатора - получены при использовании катализаторов на основе оксида железа (III)-Fe2O3 и/или двойного оксида железа FeO⋅Fe2O3, растворенных в воде. Катализатор на основе двойного оксида железа FeO⋅Fe2O3 получают путем, аналогичным катализатору на основе оксида железа (III)-Fe2O3. Кроме того, снижение вязкости и повышение текучести нефти достигается при использовании растворенного в органическом растворителе, например - петролейном эфире, катализатора на основе двойного оксида железа FeO⋅Fe2O3.

Являющийся целью результат заявляемого изобретения - снижение вязкости и повышение текучести нефти - получают с использованием в качестве каталитической основы объединенных общим признаком - способностью проявлять различную валентность и легко переходить из одного валентного состояния в другое, склонностью к комплексообразованию - иных металлов группы железа, а именно - кобальта Со и никеля Ni.

Заявляемый катализатор обладает существенным каталитическим эффектом снижения доли тяжелых фракций и вязкости, способствующим увеличению степени извлечения пластовой нефти. Наиболее существенный результат катализатор проявляет при добыче нефти с использованием паротеплового воздействия на продуктивный пласт породы, когда наиболее полно проявляется свойство растворимости катализатора как в нефти (что свойственно прототипу), так и в воде (отсутствующее у прототипа свойство). Кроме того, процесс синтеза заявляемого катализатора происходит при меньших, по сравнению с прототипом, температурах и затратах времени, что способствует энергосбережению в ходе его (катализатора) производства, что в итоге повышает рентабельность процесса добычи и последующей транспортировки нефти, существенно расширяет область применения катализаторов.

Предлагаемое изобретение удовлетворяет критериям новизны, так как при определении уровня техники не обнаружено средство, которому присущи признаки, идентичные (то есть совпадающие по исполняемой ими функции и форме выполнения этих признаков) всем признакам, перечисленным в формуле изобретения, включая характеристику назначения.

Заявляемый катализатор и способ его применения имеют изобретательский уровень, поскольку не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками данного изобретения, и не установлена известность влияния отличительных признаков на указанный технический результат.

Заявленное техническое решение с использованием известных технических средств и технологий можно реализовать в промышленном масштабе нефтепромысловой отрасли при добыче высоковязких и тяжелых нефтей, когда процесс облагораживания происходит во внутрипластовом пространстве посредством использования нефте- и водорастворимого катализатора, синтезируемого из недорогих общедоступных сырьевых материалов с использованием стандартных технических устройств и оборудования. Кроме того, применение заявляемого технического решения существенно снижает расходы при транспортировке добытой с применением катализатора нефти по трубопроводам. Это соответствует критерию «промышленная применимость», предъявляемому к изобретениям.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Патент RU 2442648. МПК - 2006.01 B01J 23/745, B01J 23/881, C10G 11/08, C10G 51/04, C10G 49/02. Приоритет от 04.08.2010. Опубл. 20.02.2012. Описание изобретения.

2. Патент RU 2443471. МПК - 2006.01 B01J 23/745, В82В 1/00, B01J 23/78, B01J 21/04, С07С 1/04. Приоритет от 02.06.2010. Опубл. 27.02.2012. Описание изобретения.

3. Патент США 7951745 В2. МПК C10G 47/02, C07F 15/00, C07F 11/00. Приоритет от 03.01.2008. Опубл. 31.05.2011. Описание изобретения.

Похожие патенты RU2608192C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИНТЕНСИФИКАЦИИ ДОБЫЧИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2015
  • Феоктистов Дмитрий Александрович
  • Петровнина Марина Сергеевна
  • Ситнов Сергей Андреевич
  • Вахин Алексей Владимирович
  • Нургалиев Данис Карлович
RU2605935C2
Способ разработки залежи высоковязкой нефти и природного битума 2019
  • Вахин Алексей Владимирович
  • Ситнов Сергей Андреевич
  • Мухаматдинов Ирек Изаилович
  • Алиев Фирдавс Абдусамиевич
  • Киекбаев Айтуган Аюпович
RU2728002C1
Катализатор внутрипластового гидрокрекинга тяжелого углеводородного сырья и способ его применения 2015
  • Ситнов Сергей Андреевич
  • Петровнина Марина Сергеевна
  • Онищенко Ярослав Викторович
  • Феоктистов Дмитрий Александрович
  • Нургалиев Данис Карлович
RU2613557C2
Катализатор для интенсификации добычи трудноизвлекаемых запасов углеводородов 2022
  • Вахин Алексей Владимирович
  • Ситнов Сергей Андреевич
  • Мухаматдинов Ирек Изаилович
  • Онищенко Ярослав Викторович
  • Феоктистов Дмитрий Александрович
  • Нургалиев Данис Карлович
RU2782670C1
КАТАЛИЗАТОР ДЕСТРУКТИВНОГО ГИДРИРОВАНИЯ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2017
  • Мухаматдинов Ирек Изаилович
  • Ситнов Сергей Андреевич
  • Феоктистов Дмитрий Александрович
  • Онищенко Ярослав Викторович
  • Вахин Алексей Владимирович
RU2659223C1
Состав для интенсификации добычи тяжёлых и вязких нефтей, способ его получения и способ его использования 2021
  • Нургалиев Данис Карлович
  • Успенский Борис Вадимович
  • Нафиков Ирек Миргазиянович
  • Вахин Алексей Владимирович
  • Ситнов Сергей Андреевич
  • Мухаматдинов Ирек Изаилович
RU2765453C1
Каталитическая композиция на основе никеля для интенсификации внутрипластовой гидротермальной конверсии высоковязкой нефти в условиях до- и субкритических воздействий и способ ее использования 2022
  • Аль-Мунтасер Амин Ахмед Мохаммед
  • Михайлова Анастасия Николаевна
  • Сувейд Мунир Абдо Мохаммед
  • Джимасбе Ричард
  • Варфоломеев Михаил Алексеевич
  • Нургалиев Данис Карлович
RU2802007C1
СОСТАВ ДЛЯ ПОДЗЕМНОГО ОБЛАГОРАЖИВАНИЯ ТЯЖЕЛОЙ НЕФТИ ПРИ ЗАКАЧКЕ ПАРА 2023
  • Кудряшов Сергей Иванович
  • Афанасьев Игорь Семенович
  • Антоненко Дмитрий Александрович
  • Соловьёв Алексей Витальевич
  • Сансиев Георгий Владимирович
  • Дубровин Кирилл Александрович
  • Симаков Ярослав Олегович
  • Вахин Алексей Владимирович
  • Ситнов Сергей Андреевич
  • Мухаматдинов Ирек Изаилович
  • Катнов Владимир Евгеньевич
  • Варфоломеев Михаил Алексеевич
RU2812659C1
Композиция для подземного облагораживания тяжелой нефти и интенсификации нефтеотдачи при закачке пара 2019
  • Аль-Мунтасер Амин Ахмед Мохаммед
  • Сабирьянов Раушан Маликович
  • Мухаматдинов Ирек Изаилович
  • Ситнов Сергей Андреевич
  • Амерханов Марат Инкилапович
  • Лябипов Марат Расимович
  • Варфоломеев Михаил Алексеевич
  • Вахин Алексей Владимирович
  • Судаков Владислав Анатольевич
  • Нургалиев Данис Карлович
RU2695353C1
Реагент для повышения извлечения трудноизвлекаемой нефти, способ его получения и способ его использования 2023
  • Вахин Алексей Владимирович
  • Ситнов Сергей Андреевич
  • Мухаматдинов Ирек Изаилович
  • Феоктистов Дмитрий Александрович
RU2818868C1

Реферат патента 2017 года КАТАЛИЗАТОР И СПОСОБ ЕГО ПРИМЕНЕНИЯ

Предлагаемое изобретение относится к области технологических процессов и может быть использовано в горном деле для интенсификации добычи тяжелых высоковязких нефтей, а также в химической, лакокрасочной, текстильной промышленности. Цели достигают тем, что создают растворимый в полярных и неполярных жидкостях катализатор проведением реакции взаимодействия при нагревании лигандообразующего компонента и каталитической основы - оксида металла группы железа, в температурном диапазоне от плюс 50° до +200°C. В качестве лигандообразующего компонента используют алкилбензолсульфокислоту, в качестве оксида металла - оксид железа (III)-Fe2O3, двойной оксид железа FeO⋅Fe2O3, а также иные металлы группы железа, а именно - кобальт Co и никель Ni. Катализатор применяют путем растворения его в рабочей жидкости, которую вводят в пласт, исходя из расчета массового расхода катализатора в рабочей жидкости в диапазоне от 1⋅10-3 до 2⋅10° % от ожидаемого количества добываемой нефти конкретного месторождения с учетом физико-химической природы флюидов и породы пласта. Воздействие заявляемого катализатора на нефть приводит к снижению доли тяжелых фракций и увеличению доли легких фракций, существенному снижению вязкости и повышению текучести этой нефти. 2 н. и 9 з.п. ф-лы.

Формула изобретения RU 2 608 192 C2

1. Катализатор нефтеводорастворимый для повышения текучести нефти в продуктивном пласте породы получают реакцией взаимодействия при нагревании лигандообразующего компонента и каталитической основы - оксида металла группы железа, в качестве лигандообразующего компонента используют алкилбензосульфокислоту.

2. Катализатор по п. 1, отличающийся тем, что в качестве оксида металла используют оксид железа(III)-Fe2O3, реакцию осуществляют в температурном диапазоне от плюс 50° до +200°С.

3. Катализатор по п. 1, отличающийся тем, что в качестве оксида металла используют двойной оксид железа FeO⋅Fe2O3, реакцию осуществляют в температурном диапазоне от плюс 50° до +200°С.

4. Катализатор по п. 2, отличающийся тем, что с целью повышения эффективности катализатора путем адаптации катализатора к свойствам нефти конкретного месторождения мольное соотношение между алкилензосульфокислотой и оксидом железа(III)-Fe2O3 выполняют в диапазоне от 50:1 до 1:1.

5. Катализатор п. 3, отличающийся тем, что с целью повышения эффективности катализатора путем адаптации катализатора к свойствам нефти конкретного месторождения мольное соотношение между алкилбензосульфокислотой и двойным оксидом железа FeO⋅Fe2O3 выполняют в диапазоне от 40:1 до 1:1.

6. Способ применения катализатора по п. 1, заключающийся в том, что катализатор растворяют в рабочей жидкости.

7. Способ применения катализатора по п. 6, заключающийся в том, что в качестве рабочей жидкости для растворения катализатора используют полярный растворитель.

8. Способ применения катализатора по п. 6, заключающийся в том, что в качестве рабочей жидкости для растворения катализатора используют неполярный растворитель.

9. Способ применения катализатора по п. 6, заключающийся в том, что растворенный в рабочей жидкости катализатор вводят в пласт, исходя из расчета массового расхода катализатора в рабочей жидкости в диапазоне от 1⋅10-3 до 2⋅100% от ожидаемого количества добываемой нефти конкретного месторождения.

10. Способ по п. 7, отличающийся тем, что в качестве полярного растворителя используют воду.

11. Способ по п. 8, отличающийся тем, что в качестве неполярного растворителя используют органический растворитель.

Документы, цитированные в отчете о поиске Патент 2017 года RU2608192C2

S.Desouky, A.Alsabagh, M.Betiha et al, Catalytic aquathermolysis of egyptian heave crude oil, International Scholarly and Scientific Research & Innovation, vol
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
CN 101418213 A, 29.04.2009
Способ приготовления продуктов восстановления оксикодеинона 1926
  • М.Фрейнд
  • Э. Шнейер
SU12603A1
ПРОЦЕСС ИЗМЕНЕНИЯ ВЯЗКОСТИ СЫРОЙ НЕФТИ 2007
  • Акоста Эстрада Марсело
RU2481389C2
Способ получения смешанных окрасок с помощью кубовых и нерастворимых азокрасителей на растительных волокнах 1925
  • Г. Петцольд
  • Г. Риттнер
SU18718A1

RU 2 608 192 C2

Авторы

Ситнов Сергей Андреевич

Вахин Алексей Владимирович

Нургалиев Данис Карлович

Шапошников Дмитрий Анатольевич

Даты

2017-01-17Публикация

2014-10-15Подача