Способ получения полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами Российский патент 2017 года по МПК C04B35/571 

Описание патента на изобретение RU2610063C1

Изобретение относится к области получения полимерных композитов, в частности композиционных полимерных пьезоэлектриков, используемых в качестве пьезодатчиков, различного рода актюаторов, термостойких покрытий.

В качестве материалов, обладающих пьезоэлектрическими свойствами, широко используются керамические пьезоэлектрики, в том числе титанаты свинца, кальция, стронция, титанаты-цирконаты свинца и др. [Физический энциклопедический словарь. - М.: Советская энциклопедия. 1965, т. 4, с. 251]. Они обладают величинами диэлектрической проницаемости до 1100-1500, а их пьезомодуль достигает значения 500 пКл/Н. Однако использовать их для получения гибких и тонкослойных датчиков и изделий конструкционного назначения не представляется возможным из-за хрупкости.

Из полимерных материалов, во многом лишенных вышеуказанного недостатка, пьезоэлектрическими свойствами обладают некоторые термопласты - поливинилхлорид, полиамид-66, полиакрилонитрил, величины пьезомодуля которых укладываются в диапазоне 1,5-4,1 пКл/Н. Наиболее высокое значение пьезомодуля получено на образцах поливинилиденфторида (ПВДФ) с кристаллической β-формой. Высокая спонтанная поляризация ПВДФ и его сополимеров, наряду с образованием полярных нецентросимметричных кристаллитов, приводит к появлению в этих материалах высокой пьезо- и пироактивности [Кочервинский В.В. Сегнетоэлектрические свойства полимеров на основе винилиденфторида // Успехи химии. - 1999. - Т. 68, № 10. - С. 904-942]. Композиционные материалы на основе матрицы из ПВДФ находят широкое применение в изготовлении различного рода актюаторов, пьезодатчиков, способных работать в агрессивных средах. При этом из ПВДФ легко получать тонкие пленки [Дмитриев И.Ю. Электроактивные полимерные системы на основе пористых пленок поливинилиденфторида: Автореф… дис. канд. физ. мат. наук. – СПб.: ИБС РАН, 2007. - 25 с.].

Основным недостатком ПВДФ является его низкая температура стеклования, приводящая к исчезновению пьезосвойств при температуре выше 80°C. Сочетание электрофизических и механических свойств как керамических, так и полимерных материалов неудовлетворительное.

Целью заявляемого изобретения является получение полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами, сочетающих высокие свойства пьезокерамики, высокую способность к переработке и высокую термостойкость полимерной матрицы.

Высокой термостойкостью и прочностными свойствами обладают полимерные композиты с матрицей на основе ароматических полиамидов [Платонова И.В., Сидоров О.В., Татарский С.А. // Физикохимии полимеров. Тверь, 2004. Вып. 10, С. 34]. К таким полимерам относится полиамидбензимидазол (ПАБИ), имеющий температуру стеклования 350°C и использующейся для производства высокопрочных термостойких волокон.

Композиционные материалы на основе матрицы из ПАБИ готовятся методом формования из раствора. В раствор полимера вносится наполнитель, перемешивается, после чего полимер выливается равномерным слоем в форму и просушивается до постоянной массы. Электретные свойства композитов зависят только от природы наполнителя, т.к сам полимер является диэлектриком и используется в качестве термостойкой матрицы.

В заявляемом изобретении для повышения термостойкости полимерной матрицы с сохранением высокого значения пьезомодуля для ПВДФ β-формы предложена полимерная матрица из смеси ПВДФ и ПАБИ. При этом формование композита из смесевой матрицы (ПВДФ+ПАБИ) осуществляется в общем растворителе диметилацетамиде (ДМАА).

Заявляемое изобретение иллюстрируется Фиг. 1 и Таблицей 1.

Фиг. 1. Дериватограммы образцов: ПВДФ+ПАБИ массового соотношения 1:1 (а), ПВДФ+ПАБИ+НЦТС-1 массового соотношения 1,0:1,0:0,3 (б).

Таблица 1. Значение диэлектрической проницаемости пленки композиционного материала на основе полимерных матриц ПВДФ и ПВДФ+ПАБИ и порошка керамической пьезокерамики с массовым соотношением 1,0:1,0:0,1-0,3.

На Фиг. 1 представлены результаты термогравиметрического анализа (ТГА) пленочных образцов, полученных из полимеров ПВДФ и ПАБИ.

Проведенный термический анализ показал Фиг. 1, что у пленок на основе смеси ПВДФ+ПАБИ и композиции ПВДФ+ПАБИ+НЦТС-1 заметная потеря массы происходит при 400°C. Это подтверждает получение полимерной матрицы с высокой термической стойкостью.

Значения диэлектрической проницаемости пленки композиционного материала на основе полимерных матриц ПВДФ и ПВДФ+ПАБИ и порошка керамической пьезокерамики с массовым соотношением 1,0:1,0:0,1-0,3 иллюстрируются Таблицей 1. Данные, содержащиеся в таблице, подтверждают высокие значения сегнетоэлектрических характеристик композитов, полученных согласно заявляемому способу.

Техническим результатом настоящего изобретения является разработка способа получения термостойких полимерных сегнетоэлектрических композитов с высокими сегнетоэлектрическими и термическими свойствами на основе пьезокерамики, например НЦТС-1 и полимерной матрицы из смеси ПВДФ+ПАБИ.

Заявляемый технический результат достигается за счет использования в способе получения полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами пьезополимерной композиции, содержащей порошкообразную сегнетоэлектрическую пьезокерамику фракции 2-3 мкм, раствор смеси полимера ПВДФ+ПАБИ в диметилацетамиде (ДМАА), при следующем содержании компонентов, мас.%: пьезокерамика 0,3-1,0; ПВДФ около 1,5, ПАБИ около 1,5; растворитель – остальное, а также созданием пленок отливкой на стеклянную подложку полученной композиции с последующей сушкой в вакууме, промыванием в воде, сушкой и дальнейшими термообработкой и поляризацией. На полученную пленку толщиной 30-50 мкм наносят электроды напылением серебра через маску с закраинами.

Экспериментально установленное оптимальное соотношение полимеров ПВДФ/ПАБИ составило 1/1. При увеличении содержания ПАБИ ухудшается смешиваемость полимеров, а при уменьшении происходит существенное снижение механических свойств и термостойкости полимерной матрицы. Оптимальный размер частиц пьезокерамики для включения в пьезополимерную композицию составил 2-3 мкм, что соответствует размещению и агрегации частиц пьезокерамики внутри пор полимерной матрицы. При увеличении размера частиц пьезокерамики выше 3 мкм наблюдалась агрегация частиц пьезокерамики вне пор полимерной матрицы, что препятствовало равномерному распределению частиц в объеме композиции. Получение частиц пьезокерамики размером менее 2 мкм проводит к дополнительным энергетическим и временным потерям без улучшения свойств композиции.

Изобретение осуществляется следующим образом.

Порошок пьезокерамики НЦТС-1 измельчают в шаровой мельнице до размера 2-3 мкм. В полученный порошок при постоянном перемешивании вводят раствор смеси полимеров ПВДФ и ПАБИ в ДМАА так, что содержание компонентов, мас %: пьезокерамика 0,3%; ПВДФ 1,5%; ПАБИ 1,5%; растворитель - остальное. Полученную смесь нагревают до 80°C и перемешивают в течение 10-15 минут. Гомогенный раствор выливают тонким слоем на стекло и помещают в сушильный шкаф, где выдерживают в течение 1,5-2,0 часов при температуре 140°C до постоянной массы пленки. Полученную пленку толщиной 30-50 мкм металлизируют напылением серебра через маску с закраинами.

Полимерные композиты с высокими сегнетоэлектрическими и термическими свойствами, полученные заявляемым способом, найдут применение в электротехнике, микроэлектронике, авиа- и ракетостроении, из них возможно изготовление термостойких покрытий, пьезодатчиков, различного рода актюаторов.

Изделия обладают высокой деформируемостью и гибкостью, высокими сегнетоэлектрическими свойствами и пьезочувствительностью.

Изобретение позволяет повысить прочность материала, расширить диапазон рабочих температур и рабочих частот.

Похожие патенты RU2610063C1

название год авторы номер документа
ПЬЕЗОПОЛИМЕРНАЯ КОМПОЗИЦИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЁ 2001
  • Абдурахманов В.М.
  • Гуляев И.Н.
  • Железина Г.Ф.
  • Журавлева А.И.
  • Крашенинников А.И.
  • Лущейкин Г.А.
  • Машинская Г.П.
  • Френкель Г.Г.
  • Шалин Р.Е.
  • Щетинин А.М.
  • Каблов Е.Н.
RU2207356C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ПЬЕЗОПЛЕНОК СО СЛОЯМИ ЭЛЕКТРОПРОВОДЯЩИХ ПОЛИМЕРОВ 2016
  • Дмитриев Иван Юрьевич
  • Курындин Иван Сергеевич
  • Ельяшевич Галина Казимировна
RU2635804C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОЙ КЕРАМОПОЛИМЕРНОЙ ПЛЁНКИ И КОМПОЗИЦИОННАЯ КЕРАМОПОЛИМЕРНАЯ ПЛЁНКА 2017
  • Бакулин Игорь Александрович
  • Журавлёва Ирина Ивановна
  • Кузнецов Сергей Иванович
  • Панин Антон Сергеевич
  • Тарасова Екатерина Юрьевна
RU2670224C1
МАГНИТОЭЛЕКТРИЧЕСКИЙ КОМПОЗИТНЫЙ МАТЕРИАЛ 2019
  • Макарова Людмила Александровна
  • Алехина Юлия Александровна
  • Хайруллин Марат Фаизович
  • Перов Николай Сергеевич
RU2731416C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПОЛИМЕРНЫЙ ДАТЧИК МАТРИЧНОГО ТИПА 2017
  • Белов Алексей Николаевич
  • Солнышкин Александр Валентинович
  • Строганов Антон Александрович
  • Шевяков Василий Иванович
RU2666178C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ПЬЕЗОМАТЕРИАЛА 2019
  • Луговая Мария Андреевна
  • Рыбянец Андрей Николаевич
  • Швецова Наталья Александровна
RU2713835C1
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКОННО-ТЕКСТУРИРОВАННОЙ СТЕКЛОКЕРАМИКИ 2009
  • Стефанович Сергей Юрьевич
  • Сигаев Владимир Николаевич
  • Окада Акира
RU2422390C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ПЬЕЗОМАТЕРИАЛА 2015
  • Науменко Анастасия Андреевна
  • Рыбянец Андрей Николаевич
  • Швецова Наталья Александровна
RU2623693C2
ВЫСОКОВОЛЬТНЫЙ ГЕНЕРАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2013
  • Каплунов Иван Александрович
  • Малышкина Ольга Витальевна
  • Головнин Владимир Алексеевич
  • Иноземцев Николай Владимирович
  • Дольников Геннадий Геннадьевич
RU2551666C2
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК УДАРА 2013
  • Каплунов Иван Александрович
  • Малышкина Ольга Витальевна
  • Головнин Владимир Алексеевич
  • Иноземцев Николай Владимирович
  • Дольников Геннадий Геннадьевич
RU2533539C1

Иллюстрации к изобретению RU 2 610 063 C1

Реферат патента 2017 года Способ получения полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами

Изобретение относится к области получения полимерных композитов, в частности композиционных полимерных пьезоэлектриков, используемых в качестве пьезодатчиков, различного рода актюаторов, термостойких покрытий. В порошок пьезокерамики, измельченный в шаровой мельнице, вливают при постоянном перемешивании раствор смеси полимеров ПВДФ и ПАБИ в ДМАА при содержании компонентов, мас.%: пьезокерамика 0,3-1,0, ПВДФ 1,5, ПАБИ 1,5, растворитель - остальное. Нагревают полученную смесь до 60°C и перемешивают в течение 10-15 минут. Пленку композита получают отливкой полученного гомогенного раствора на стеклянную подложку полученного гомогенного раствора и сушкой в вакууме до постоянной массы. Рекомендуемый размер частиц порошка сегнетоэлектрической пьезокерамики - 2-3 мкм. При изготовлении пьезочувствительных элементов пленку композита металлизируют напылением серебра через маску с закраинами. Техническим результатом является разработка способа получения термостойких полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами. 2 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 610 063 C1

1. Способ получения полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами, включающий измельчение пьезокерамики в шаровой мельнице; введение, при постоянном перемешивании, в полученный порошок сегнетоэлектрической пьезокерамики раствора смеси полимеров ПВДФ и ПАБИ в ДМАА при содержании компонентов, мас.%: пьезокерамика 0,3-1,0, ПВДФ 1,5, ПАБИ 1,5, растворитель - остальное; нагрев полученной смеси до 80°C; перемешивание в течение 10-15 минут; отливку на стеклянную подложку полученного гомогенного раствора; сушку в вакууме с получением пленки композита.

2. Способ получения полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами по п. 1, отличающийся тем, что порошковая сегнетоэлектрическая пьезокерамика имеет размер частиц 2-3 мкм.

3. Способ получения полимерных композитов с высокими сегнетоэлектрическими и термическими свойствами по п. 2, отличающийся тем, что пленку композита металлизируют напылением серебра через маску с закраинами.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610063C1

А.Ю
Данилов et al, ИССЛЕДОВАНИЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МАТРИЦЫ ИЗ СМЕСИ ПОЛИМЕРОВ ПОЛИВИНИЛИДЕНФТОРИДА И ПОЛИАМИДБЕНЗИМИДАЗОЛА, ПОЛЗУНОВСКИЙ ВЕСТНИК N 3, 137-141, 2009
A.Y
Danilov et al, STUDY OF MORPHOLOGY AND PIEZOELECTRIC PROPERTIES OF COMPOSITE MATERIALS BASED ON MATRIX FROM POLYVINYLIDENE FLUORIDE AND POLYAMIDEBENZIMIDAZOLE, 127-128, Symposium on Composite Materials, Saint Petersburg, RUSSIA, 13.07.2012
US5505870 A 09.04.1996
JPH03133300 A 06.06.1991.

RU 2 610 063 C1

Авторы

Данилов Анатолий Юрьевич

Межеумов Игорь Николаевич

Хижняк Светлана Дмитриевна

Пахомов Павел Михайлович

Даты

2017-02-07Публикация

2015-12-01Подача