Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин, например в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах.
Известен способ измерения постоянной составляющей множества совместно действующих гармонических сигналов [Агамалов Ю.Р. Измерение сигнала постоянного тока, инвариантное к некогерентным гармоническим помехам // Датчики и системы - 2014 - №12 - С. 2-6]. Между тем в ряде случаев, например при измерении параметров нелинейных многоэлементных комплексных электрических цепей (в частности, двухполюсников), возникает задача совместного инвариантного измерения как постоянной составляющей, так и самих гармонических сигналов. Данный способ не позволяет решить эту задачу, что является его недостатком.
Известен также принятый автором за прототип способ измерения вектора гармонического сигнала , действующего совместно с другими гармоническими сигналами , где , имеющими, как и сигнал G(t), известные, но не кратные друг другу значения периодов (Tm и T), согласно которому проекции p' и pʺ сигнала G(t) на два ортогональных совпадающих с измеряемым сигналом по частоте вектора опорных сигналов, связанные с А и ϕ0, например, соотношениями и , измеряют путем выборки и суммирования дискретных отсчетов, или дискрет, суммарного сигнала с помощью мгновенных импульсов, действующих в моменты времени, образующие множества и , а значения проекций p' и pʺ определяют по соотношениям и , где - нормирующий множитель, причем формируют с помощью пошаговой процедуры, начинающейся с произвольного начального момента t0, выступающего в качестве исходного множества, и получения на первом шаге дополнительного множества путем сдвига исходного на нечетное число полупериодов первого подавляемого сигнала или гармонической помехи, и далее получения на каждом последующем шаге дополнительного множества посредством сдвига полученного на предыдущем шаге множества на нечетное число nm полупериодов m-го подавляемого сигнала до тех пор, пока число шагов не станет равным М-1 (RU №2377577 С1, 27.12.2009).
Недостатком данного способа является отсутствие возможности совместного инвариантного измерения нескольких участвующих в измерительном процессе гармонических сигналов и сопутствующей им постоянной составляющей (понижающей при всем этом точность измерения самих гармонических сигналов). Вместе с тем совместное инвариантное измерение данных сигналов необходимо в ряде случаев, например, при измерении параметров нелинейных комплексных объектов измерения, требующих их смещения по постоянному напряжению или току.
Техническим результатом изобретения является возможность совместного измерения в реальном масштабе времени множества некогерентных гармонических сигналов с сопутствующей им постоянной составляющей и повышение точности измерения благодаря исключению их взаимного влияния при инвариантности результата измерения к моменту начала измерения.
Технический результат достигается тем, что в способе измерения векторов гармонических сигналов , где , имеют известные некратные друг к другу периоды Tj и действуют вместе с постоянной составляющей W0, при котором амплитуды Aj и начальные фазовые сдвиги ϕ0j сигналов Gj(t) определяют по соотношениям и
и ,
где , а .
Сущность изобретения состоит в том, что путем особой частотозависимой дискретизации участвующих в измерительном процессе сигналов, построенной на учете их специфики и организованной так, чтобы в качестве первичной измерительной информации выступали получаемые в реальном времени суммы дискрет этих сигналов, формируют измерительную процедуру, инвариантную по отношению к множеству совместно действующих и при этом одновременно измеряемых гармонических сигналов и их постоянной составляющей, а также к моменту ее начала.
Достигают этого путем учета особенностей принятого метода измерений и измеряемых сигналов - множества некогерентных гармонических сигналов с взаимно не кратными частотами и сопутствующей им постоянной составляющей, а также специфики используемого метода измерений, заключающейся в том, что информацию об измеряемых сигналах здесь несут алгебраические суммы дискрет суммарного сигнала σ(t), выборку которых осуществляют на множествах моментов времени, сформированных с учетом условий упорядоченности этих множеств, означающих соответствие последовательностей номеров моментов времени и их значений согласно соотношению .
Сделаем теперь пояснения относительно приведенных выше соотношений, по которым определяют сигналы W0 и , . Отличие множества , на котором производится измерение W0, от аналогичного множества в указанном выше аналоге [Агамалов Ю.Р. Измерение сигнала постоянного тока, инвариантное к некогерентным гармоническим помехам // Датчики и системы - 2014 - №12 - С. 2-6.] заключается в том, что в последнем данное множество не зависит от приведенных выше условий: Tj>Tj-1, где и , где . Различие это существенно, поскольку в зависимости от соотношения значений Tj радикально влияет на продолжительность процедуры получения первичной измерительной информации, так что в аналоге она может быть меньше, чем в предлагаемом способе (предлагаемом изобретении).
Что касается измерения проекций , , то в данном случае сигнал W0 является источником (аддитивных) погрешностей, которые устраняют путем вычитания из суммы дискрет , обеспечивающей в данном случае лишь искаженное измерение , компенсирующей влияние сигнала W0 суммы дискрет .
Относительно погрешностей измерения в целом следует сказать, что они прямо пропорциональны погрешностям значений частот, участвующих в измерительном процессе некогерентных гармонических сигналов, а также погрешностям устройств выборки и хранения дискрет.
Наконец, вместо приведенных в ограничительной части формулы изобретения соотношений, связанных с измерением амплитуд Aj и начальных фазовых углов ϕ0j некогерентных гармонических сигналов Gj(t), могут выступать соотношения, как получаемые путем тригонометрических преобразований из содержащихся в формуле изобретения, так и другие, фигурирующие в векторном исчислении.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА | 2008 |
|
RU2377577C1 |
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА | 2011 |
|
RU2466413C1 |
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА | 2014 |
|
RU2578742C1 |
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА | 2013 |
|
RU2528274C1 |
СПОСОБ НЕКОГЕРЕНТНОГО НАКОПЛЕНИЯ СВЕТОЛОКАЦИОННЫХ СИГНАЛОВ | 2011 |
|
RU2455615C1 |
Способ определения величин, характеризующих нестабильность движения магнитного носителя | 1991 |
|
SU1817865A3 |
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ | 1992 |
|
RU2072548C1 |
СПОСОБ И УСТРОЙСТВО ФОРМИРОВАНИЯ ОПОРНОГО СИГНАЛА ВЫЧИСЛИТЕЛЬНЫМИ СРЕДСТВАМИ В СИСТЕМАХ ЧАСТОТНОЙ И ФАЗОВОЙ СИНХРОНИЗАЦИИ ШИРОКОПОЛОСНЫХ СИСТЕМ СВЯЗИ | 2013 |
|
RU2535198C1 |
СПОСОБ СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕКТРИЧЕСКОГО СИГНАЛА | 2011 |
|
RU2455653C1 |
СПОСОБ РЕГИСТРАЦИИ И ОБРАБОТКИ ТЕЛЕМЕТРИЧЕСКОГО СИГНАЛА С ВРЕМЕННЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ | 2007 |
|
RU2338261C1 |
Изобретение относится к области электроизмерительной техники. Сигналы , где , имеют известные некратные друг к другу периоды Tj и действуют вместе с постоянной составляющей W0, при этом амплитуды Aj и начальные фазовые сдвиги ϕ0j сигналов Gj(t) определяют по соотношениям и
где
Технический результат заключается в возможности совместного инвариантного измерения в реальном масштабе времени множества некогерентных гармонических сигналов.
Способ измерения векторов гармонических сигналов, характеризующийся тем, что сигналы , где , имеют известные некратные друг к другу периоды Tj и действуют вместе с постоянной составляющей W0, при котором амплитуды Aj и начальные фазовые сдвиги ϕ0j сигналов Gj(t) определяют по соотношениям и
где
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА | 2013 |
|
RU2528274C1 |
US 5559689 A, 24.09.1996 | |||
СПОСОБ СПЕКТРАЛЬНОГО АНАЛИЗА СИГНАЛА | 1994 |
|
RU2086991C1 |
CN 104753058 A, 01.07.2015. |
Авторы
Даты
2017-02-21—Публикация
2015-12-18—Подача