Способ изготовления разрядника Российский патент 2017 года по МПК H01J17/02 H01T21/06 

Описание патента на изобретение RU2611579C1

Изобретение относится к газоразрядной технике и может быть использовано при изготовлении высоковольтных газоразрядных приборов, например металлокерамических разрядников для малогабаритных импульсных ускорителей.

Разрядники широко используются в ускорительной технике для коммутации сильноточных высоковольтных цепей. К коммутирующим разрядникам (особенно к тем, которые работают в каскадных генераторах Аркадьева-Маркса, Фитча и др.) предъявляются требования малого разброса среднего значения напряжения пробоев одного разрядника относительно другого, что можно обеспечить при использовании оптимального способа изготовления разрядников.

Известен способ изготовления разрядника (Патент RU №2231161 «Способ изготовления разрядника», Зорин A.M., опубликован 20.06.2004, МПК H01J 17/02), который заключается в сборке электродных узлов, размещении каждого узла на отшлифованный по плоскостям цилиндр и накрывании узла фиксирующим стаканом с отверстием. После этого по плоскости электрода, выступающей из отверстия стакана, производят деформацию чашки электрода до устранения кривизны рабочей поверхности электрода, затем впаивают узлы в корпус прибора.

Недостатком данного способа является сложность обеспечения заявленной точности выполнения размеров деталей (указана неплоскостность электродов не более 0.01-0.015 мм). Практически такая точность при изготовлении и корректировке формы штампованных деталей недостижима из-за упругости материала, остаточных напряжений, деформациях при пайке и т.д. Технологические допуски на размеры деталей, изготовленных штамповкой, составляют 0.1-0.2 мм, что приведет к суммарной непараллельности двух электродов 0.2-0.4 мм.

Наиболее близким к заявляемому является способ изготовления разрядника (Киселев Ю.В., Черепанов В.П. Искровые разрядники. - Москва: Советское радио, 1976. - С. 65-66), согласно которому изолятор соединяют с коваровым корпусом с помощью охватывающего спая; анод припаивают к торцу малого основания изолятора; катодный узел приваривается аргонодуговой сваркой к корпусу. Катодный узел представляет собой крышку, сквозь отверстие в которой проходит вывод со штенгелем, а с внутренней стороны припаян катод. Длины всех деталей и межэлектродного зазора образуют многозвенную замкнутую размерную цепь, а длина межэлектродного зазора является замыкающим звеном этой цепи.

Недостатком данного способа является то, что независимо от порядка сборки разрядника, поле допуска длины межэлектродного зазора определяется как сумма допусков на длины всех деталей разрядника (число которых в приведенном примере равно семи). Для обеспечения точных зазоров требуется уменьшать эту сумму, что приведет к ужесточению допусков на отдельные детали вплоть до 6-7 квалитета, усложнению процесса изготовления и сильному удорожанию деталей и всего разрядника.

Задачей данного изобретения являлось создание высокопроизводительного способа изготовления разрядников с хорошей повторяемостью средних значений напряжения пробоя.

Техническим результатом является снижение поля допуска на длину межэлектродного зазора при изготовлении деталей разрядника с точностью размеров по 12-14 квалитету.

Указанный технический результат достигается тем, что по сравнению с известным способом изготовления разрядников, согласно которому детали разрядника соединяют таким образом, что длины A0…AN всех деталей и межэлектродного зазора образуют многозвенную замкнутую размерную цепь, где N - количество деталей, длина A0 межэлектродного зазора является замыкающим звеном этой цепи, новым является то, что в первую очередь собирают два промежуточных узла разрядника, в состав которых входят все детали разрядника, кроме завершающей детали длиной Am, где 1≤m≤N, длины узлов являются размерными звеньями с фактическими величинами L1 и L2, номинальное значение длины Amном завершающей детали выбирают исходя из равенства , где A0ном - номинальная длина межэлектродного зазора, размер звена положительный, если это звено является увеличивающим межэлектродный зазор A0, и отрицательный, если звено является уменьшающим, завершающую деталь с фактической длиной Amфакт соединяют с промежуточным узлом длиной L1, замеряют размер , рассчитывают фактическую длину A0факт межэлектродного зазора, равную , затем осуществляют окончательную сборку разрядника путем соединения завершающей детали со вторым промежуточным узлом и производят закачку разрядника рабочим газом, причем давление газа рассчитывают по формуле , где Pном - номинальное давление газа.

Сборка двух узлов с известными фактическими длинами и наличие завершающей детали, длина которой рассчитывается по приведенной формуле, позволяет уменьшить поле допуска длины межэлектродного зазора до величины только одного допуска на длину завершающей детали. При этом величины допусков на длины всех остальных деталей разрядника выбираются по 12-14 квалитету согласно только технологическим требованиям на пайку, сварку и т.д., что значительно снижает трудозатраты изготовления деталей по сравнению с выполнением их длины по 6-7 квалитету. Затраты времени на замер фактических размеров узлов в условиях мелкосерийного, единичного и экспериментального производства незначительны и несравнимо меньше времени изготовления деталей и сборки разрядника.

Выбор номинального значения длины Amном завершающей детали из равенства позволяет в качестве завершающей детали использовать любую удобную для данной конструкции разрядника деталь и рассчитать ее длину, при которой обеспечивается требуемая длина межэлектродного зазора.

Корректировка давления рабочего газа по формуле позволяет компенсировать изменение размеров деталей и узлов разрядника при их деформации после соединения методами пайки и сварки.

Таким образом, в данном изобретении использование перечисленных отличительных признаков приводит к реализации указанного технического результата.

На фиг. 1 показан компактный металлокерамический разрядник и его размерная цепь, где:

1 - фланец;

2 - манжета;

3 - изолятор;

4 - переходник;

5 - электрод (катод);

6 - электрод (анод);

7 - крышка;

8 - корпус;

A1-A8 - длины деталей;

А0 - длина межэлектродного зазора.

На фиг. 2 и фиг. 3 показаны два варианта сборки разрядника при выборе в качестве завершающей детали поз. 8 и поз. 6 соответственно, где:

L1 - длина первого узла;

L2 - длина второго узла;

L3 - размер, замеряемый перед окончательной сборкой.

Согласно фиг. 2, где в качестве завершающей детали используется корпус поз. 8, в равенстве его членами являются:

- Amном (A8ном) - увеличивающее звено (поскольку с его увеличением длина межэлектродного зазора A0 растет) с положительным значением;

- L1 - уменьшающее (с его увеличением длина межэлектродного зазора A0 уменьшается) с отрицательным значением;

- L2 - тоже уменьшающее с отрицательным значением.

В этом случае равенство приобретает вид и, соответственно, .

Справедливость полученного равенства иллюстрируется рисунком на фиг. 2, где размер (A8ном является длиной корпуса и, как это видно из рисунка, равен сумме абсолютных значений длин L1, L2 промежуточных узлов и длины A0ном межэлектродного зазора.

Во втором примере, приведенном на фиг. 3, показан вариант сборки, при котором завершающей деталью является электрод поз. 6. В этом случае члены равенства следующие:

- Amном (A6ном) - уменьшающее звено с отрицательным значением;

- L1 - увеличивающее звено с положительным значением;

- L2 - уменьшающее звено с отрицательным значением.

Равенство приобретает следующий вид: , и, соответственно, , что наглядно подтверждается рисунком на фиг. 3.

Таким образом, приведенное равенство позволяет рассчитать длину завершающей детали в разряднике любой конструкции. При этом допуск на величину межэлектродного зазора будет равен только допуску на длину Am завершающей детали.

С применением заявленного способа была изготовлена партия импульсных металлокерамических разрядников с конструкцией, приведенной на фиг. 1. Диаметр разрядников равен 50 мм, длина - 66 мм, длина межэлектродного зазора - 5 мм, номинальное напряжение пробоя разрядников равно 200 кВ. Количество разрядников в партии - 30 шт.

Сборка каждого разрядника производилась при следующей последовательности действий (фиг. 2):

- изготовление деталей разрядника; при этом завершающая деталь (корпус поз. 8) была выполнена с припуском, который позволял впоследствии доработать ее согласно рассчитанной номинальной длине;

- пайка и сварка узла катода, состоящего из деталей поз. 1, 2, 3, 4, 5;

- сварка узла анода, состоящего из деталей поз. 6, 7;

- замеры длин узла катода (L1) и узла анода (L2);

- расчет номинальной длины A8ном корпуса поз. 8, доработка корпуса;

- сварка узла катода и корпуса поз. 8;

- замер размера L3;

- расчет фактической длины межэлектродного зазора;

- расчет корректированного давления рабочего газа;

- приварка анодного узла к корпусу;

- заполнение разрядника газом и отпайка.

При изготовлении разрядников деталей с допусками по 12-14 квалитету, фактическая длина межэлектродного зазора отличалась от номинальной не более чем на ± 0.1 мм. Средние напряжения пробоя в партии составляли 200±8 кВ с вероятностью 0,95. Относительная ошибка напряжений пробоя равна 4%, что примерно в 2-3 раза меньше, чем в устройстве по прототипу.

Похожие патенты RU2611579C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ РАЗРЯДНИКА С ВОДОРОДНЫМ НАПОЛНЕНИЕМ 2018
  • Меркулов Борис Петрович
  • Маханько Дмитрий Сергеевич
  • Черепенникова Наталья Ивановна
RU2697264C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ РАЗМЕРНОЙ ОБРАБОТКИ ИНСТРУМЕНТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Строшков В.П.
  • Пшеничников В.А.
  • Кожевников В.Л.
  • Овечкин С.И.
RU2240901C2
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ РАЗМЕРНОЙ ОБРАБОТКИ ТУРБИННЫХ ЛОПАТОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Строшков Валерий Пантилеймонович
  • Пшеничников Владимир Александрович
RU2305614C2
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ФОРМООБРАЗОВАНИЯ ТУРБИННЫХ ЛОПАТОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Строшков Валерий Пантилеймонович
  • Пшеничников Владимир Александрович
  • Кожевников Виктор Леонидович
RU2283735C2
СПОСОБ ПОДБОРА ПРОФИЛЯ ПОВЕРХНОСТИ ЭЛЕКТРОДОВ ДЛЯ ВЫСОКОВОЛЬТНЫХ РАЗРЯДНИКОВ 2010
  • Юрьев Андрей Леонидович
  • Николаев Дмитрий Павлович
  • Эльяш Света Львовна
RU2423765C1
Электрод-инструмент 1982
  • Гилин Виктор Федорович
  • Меркушев Аркадий Андреевич
  • Мокроносов Евгений Дмитриевич
SU1098738A1
КОМПЛЕКТ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ДЛЯ СОЗДАНИЯ ОБЪЕМНЫХ ИЗДЕЛИЙ И СПОСОБ ИХ СБОРКИ 2001
  • Шухман Ю.И.
RU2201124C2
УЧЕБНАЯ УСТАНОВКА ДЛЯ РАЗВИТИЯ НАВЫКОВ КОНСТРУИРОВАНИЯ ПРИ РАБОЧЕМ ПРОЕКТИРОВАНИИ 2004
  • Пичугин В.С.
  • Хорошев А.Н.
  • Хорошев Д.А.
RU2239871C1
СПОСОБ ЮСТИРОВКИ КАТОДНО-СЕТОЧНОГО УЗЛА 2003
  • Горбатов Д.Н.
  • Зуев А.В.
RU2251757C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕМЕНТОВ И СБОРКИ ИОННО-ОПТИЧЕСКОЙ СИСТЕМЫ (ВАРИАНТЫ), ИОННО-ОПТИЧЕСКАЯ СИСТЕМА 2015
  • Баскаков Алексей Васильевич
  • Дронов Павел Александрович
  • Иванов Андрей Владимирович
  • Спивак Олег Олегович
  • Натальченко Тимур Дмитриевич
  • Симонов Виталий Юрьевич
  • Степанищев Сергей Владимирович
RU2608188C1

Иллюстрации к изобретению RU 2 611 579 C1

Реферат патента 2017 года Способ изготовления разрядника

Изобретение относится к области газоразрядной техники и может быть использовано при изготовлении высоковольтных газоразрядных приборов, например металлокерамических разрядников для малогабаритных импульсных ускорителей. В способе изготовления разрядника в первую очередь собирают два промежуточных узла разрядника, в состав которых входят все детали разрядника, кроме завершающей детали длиной Am, где 1≤m≤N, длины узлов являются размерными звеньями с фактическими величинами L1 и L2, номинальное значение длины Amном завершающей детали выбирают исходя из равенства , где A0ном - номинальная длина межэлектродного зазора, размер каждого звена положительный, если соответствующее звено является увеличивающим межэлектродный зазор A0 и отрицательный, если звено является уменьшающим, завершающую деталь с фактической длиной Amфакт соединяют с промежуточным узлом длиной L1, замеряют размер , рассчитывают фактическую длину A0факт межэлектродного зазора, равную , затем осуществляют окончательную сборку разрядника путем соединения завершающей детали со вторым промежуточным узлом и производят закачку разрядника рабочим газом, причем давление газа рассчитывают по формуле , где Pном - номинальное давление газа.

Технический результат - снижение поля допуска на длину межэлектродного зазора при изготовлении деталей разрядника с точностью размеров по 12-14 квалитету. 3 ил.

Формула изобретения RU 2 611 579 C1

Способ изготовления разрядника, согласно которому детали разрядника соединяют таким образом, что длины А0…AN всех деталей и межэлектродного зазора образуют многозвенную замкнутую размерную цепь, где N - количество деталей, длина А0 межэлектродного зазора является замыкающим звеном этой цепи, отличающийся тем, что в первую очередь собирают два промежуточных узла разрядника, в состав которых входят все детали разрядника, кроме завершающей детали длиной Am, где 1≤m≤N, длины узлов являются размерными звеньями с фактическими величинами L1 и L2, номинальное значение длины Аmном завершающей детали выбирают исходя из равенства где А0ном - номинальная длина межэлектродного зазора, размер каждого звена положительный, если соответствующее звено является увеличивающим межэлектродный зазор А0 и отрицательный, если звено является уменьшающим, завершающую деталь с фактической длиной Аmфакт соединяют с промежуточным узлом длиной L1, замеряют размер L3=L1+Amфакт, рассчитывают фактическую длину А0факт межэлектродного зазора, равную , затем осуществляют окончательную сборку разрядника путем соединения завершающей детали со вторым промежуточным узлом и производят закачку разрядника рабочим газом, причем давление газа рассчитывают по формуле Р=Рном×А0факт0ном, где Рном - номинальное давление газа.

Документы, цитированные в отчете о поиске Патент 2017 года RU2611579C1

КИСЕЛЕВ Ю.В., Искровые разрядники,Москва, Советское радио, 1976, c
Разборное приспособление для накатки на рельсы сошедших с них колес подвижного состава 1920
  • Манаров М.М.
SU65A1
СПОСОБ ИЗГОТОВЛЕНИЯ РАЗРЯДНИКА 2002
  • Зорин А.М.
RU2231161C1
ГАЗОНАПОЛНЕННЫЙ РАЗРЯДНИК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2011
  • Меркулов Борис Петрович
  • Самородов Владислав Георгиевич
  • Меркулов Дмитрий Борисович
RU2474913C1
DE 3401367A1, 25.07.1985
US 4283747A, 11.08.1981.

RU 2 611 579 C1

Авторы

Юрьев Андрей Леонидович

Эльяш Света Львовна

Николаев Дмитрий Павлович

Даты

2017-02-28Публикация

2015-09-24Подача