СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА НА ОСНОВЕ МИКРОПОРИСТОГО ЦЕОЛИТА И МЕЗОПОРИСТОГО ОКСИДА КРЕМНИЯ Российский патент 2017 года по МПК C01B39/04 

Описание патента на изобретение RU2613516C1

Изобретение относится к области неорганической химии и химической технологии, а именно к способам получения соединений со свойствами молекулярных сит, которые имеют катион-обменные свойства - микро-мезопористым материалам, содержащим в своей структуре кристаллическую фазу цеолита и аморфную фазу мезопористого оксида кремния (в частности, MFI и MCM-41).

Цеолиты MFI находят широкое применение в различных процессах гетерогенного катализа. Однако, вследствие того, что размер пор в структуре цеолита MFI не превышает 0,5-0,6 нм (микропоры), существует проблема диффузионного ограничения при проведении каталитических процессов, что обуславливает, в частности, быструю дезактивацию катализатора при закупорке пор углеродистыми отложениями (закоксовывание катализатора). Одним из решений данной проблемы может служить синтез и использование в катализе материалов, содержащих наряду с микропорами, и поры с большим размером (от 2 до 50 нм, мезопоры). Одним из таких материалов является композит на основе микропористого цеолита и мезопористого оксида кремния микро-мезопористый - композит MFI/MCM-41. Большинство способов получения данного материала представляет собой длительную процедуру. Кроме этого, многие способы являются сложными, т.к. предлагают повторную рекристаллизацию синтезированного цеолита MFI, подвергнутого щелочной обработке. Поэтому актуальным является создание более простого ускоренного способа кристаллизации синтезной смеси с целью получения микро-мезопористого композита, в частности, MFI/MCM-41. В последние годы способ получения микро-мезопористых композитов вызывает большой интерес среди исследователей во всем мире. Это объясняется уникальным сочетанием свойств фазы кристаллического цеолита и мезопористого аморфного оксида кремния.

Одной из первых работ, в которой описан способ получения микро-мезопористого композита MFI/MCM-41, является статья (Arne Karlsson, Michael Stocker, Ralf Schmidt. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. // Microporous and Mesoporous Materials 27 (1999) 181-192), в которой авторы предлагают получение микро-мезопористого материала с использованием двух темплатов: бромида гексилтриметиламмония и бромида тетрадецилтриметиламмония. Кристаллизацию синтезной смеси проводили как при постоянной температуре 150°С или 175°С в течение 6 дней, так и при использовании двухстадийной кристаллизации, где на первой стадии кристаллизацию проводили при 100°С в течение 5 дней, а на второй стадии - при 175°С в течение 5 дней. Структура полученных материалов подтверждена рентгенофазовым анализом.

Известен способ получения микро-мезопористого композита (Hansheng Li, Shichao Не, Kе Ma, Qin Wu, Qingze Jiao, Kening Sun. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5. // Applied Catalysis A: General 450 (2013), 152-159), в котором проводят вторичную рекристаллизацию обработанного щелочью ранее синтезированного цеолита H-ZSM-5. Согласно данному способу заранее синтезированный цеолит Н-ZSM-5 обрабатывают 1,5М раствором гидроксида натрия. После этого добавляют в полученную смесь раствор бромида цетилтриметиламмония и проводят кристаллизацию при температуре 110°С в течение 24 часов. Затем повышают рН раствора до 8,5 и проводят кристаллизацию при температуре 110°С 24 часа. После этого полученный продукт фильтруют, промывают дистиллированной водой, сушат и прокаливают при 550°С в течение 6 часов. Затем проводят рентгенофазовый анализ.

Недостатками указанных способов являются как использование в качестве исходного материала цеолита H-ZSM-5, синтез которого уже является сложной и трудоемкой процедурой, так и продолжительное время кристаллизации, которая состоит из двух стадий и, как следствие, длительное общее время синтеза.

Известен способ получения микро-мезопористого композита MFI/MCM-41 (CN 103723741, 2014), в котором реакционную смесь для синтеза получают смешением бромида цетилтриметиламмония, сульфата алюминия, гидроксида натрия и тетраэтилортосиликата с дистиллированной водой. Полученную реакционную смесь подвергают кристаллизации при температуре 170°С в течение двух дней. Образующуюся суспензию фильтруют, промывают дистиллированной водой и сушат при температуре 100°С в течение ночи. После чего проводят рентгенофазовый анализ.

Недостатком способа является длительное время кристаллизации реакционной смеси. Кроме этого, наблюдаются различия в рентгенограммах образцов, полученных данным способом. Это говорит о плохой воспроизводимости данного способа получения микро-мезопористого композита MFI/MCM-41.

Наиболее близким к изобретению является способ получения композита на основе микропористого цеолита MFI и мезопористого оксида кремния - МСМ-41 с использованием битемплатного метода, где кристаллизацию реакционной смеси проводят в 2 ступени (Limin Huang, Wanping Guo, Peng Deng, Zhiyuan Xue, and Quanzhi Li. Investigation of Synthesizing MCM-41/ZSM-5 Composites. // J. Phys. Chem. B, Vol. 104, No. 13, 2000, 2817-2823). Согласно этому способу раствор бромида тетрапропиламмония (3,55 г бромида тетрапропиламмония растворяют в 9 мл деионизированной воды) смешивают с 16 г жидкого стекла (7,4% масс оксида натрия, 25,4% масс. оксида кремния, 67,2% масс. воды). Исходная прозрачная смесь быстро образует гель и превращается в белую непрозрачную суспензию, которую энергично перемешивают в течение 1-4 часов. Затем к суспензии добавляют 44 г 9,9% раствора бромида цетилтриметиламмония и конечную суспензию перемешивают еще 1 час. Мольное соотношение компонентов в синтезной смеси оксид натрия:оксид кремния:оксид алюминия:бромид цетилтриметиламмония:бромид тетрапропиламмония:вода составляет, соответственно, 0,32:1:0,0334:0,16:0,2:55. После чего проводят двухступенчатую кристаллизацию. На первой ступени кристаллизацию проводят при 100°С и рН 11 в течение двух дней. На второй ступени кристаллизацию проводят при 125°С, рН 9,5 в течение 1-12 дней. Полученную суспензию фильтруют, промывают дистиллированной водой, сушат при комнатной температуре, прокаливают при 540°С в течение часа в токе азота и в течение 5 часов в воздушной среде. Затем проводят рентгенофазовый анализ.

Недостатками данного способа являются длительное время и сложность стадии кристаллизации реакционной смеси, которую проводят в 2 ступени, причем каждая из этих ступеней занимает продолжительное время. Кроме того, приведенные в известном способе рентгенограммы показывают, что, несмотря на длительное время кристаллизации, не удается добиться одновременного достижения высокой степени кристалличности цеолита и стабильности мезопористого материала.

Таким образом, данный способ недостаточно эффективен.

Задачей настоящего изобретения является повышение эффективности способа получения композита на основе микропористого цеолита и мезопористого оксида кремния.

Указанная задача достигается способом получения композита на основе микропористого цеолита и мезопористого оксида кремния, заключающимся в том, что готовят первую смесь, состоящую из тетраэтилортосиликата, воды, гидроксида тетрапропиламмония и изопропоксида алюминия, взятых в мольном соотношении тетраэтилортосиликат:вода:гидроксид тетрапропиламмония:изопропоксид алюминия, равном 1:35-40:0,15-0,16:0,012-0,013, и вторую смесь, содержащую воду, бромид цетилтриметиламмония и гидроксид натрия, взятых в мольном соотношении вода:бромид цетилтриметиламмония:гидроксид натрия, равном, соответственно, 1:0,0014-0,0015:0,0038-0,005, первую смесь подвергают воздействию микроволнового излучения при температуре 100-115°С в течение 110-115 минут, затем в полученный продукт добавляют вторую смесь в массовом соотношении продукт вторая смесь, равном 1:1,5-1,7, полученную суспензию подвергают кристаллизации под воздействием микроволнового излучения при температуре 180-190°С, в течение 180-210 минут, образовавшийся осадок отделяют центрифугированием, промывают, сушат и прокаливают с получением целевого продукта.

Достигаемый технический результат заключается в повышении качественных характеристик целевого продукта, а именно, в получении целевого продукта с мезопорами большего размера, чем в целевом продукте, получаемом известным способом, что способствует увеличению времени стабильной работы микро-мезопористого композита при использовании последнего в качестве катализатора, в сокращении времени кристаллизации в более чем в 10 раз, с достижением общей продолжительности синтеза 28 часов (с учетом приготовления синтезной смеси, кристаллизации, центрифугирования, сушки и отжига темплатов) за счет проведения стадии кристаллизации при температуре выше известной температуры в ходе гидротермального синтеза, но при которой не происходит разрушение мезопористой фазы.

Сущность изобретения заключается в следующем.

Готовят первую смесь, состоящую из тетраэтилортосиликата, воды, гидроксида тетрапропиламмония и изопропоксида алюминия, взятых в мольном соотношении тетраэтилортосиликат:вода:гидроксид тетрапропиламмония:изопропоксид алюминия, равном, соответственно, 1:35-40:0,15-0,16:0,012-0,013. Смесь помещают в герметичную емкость (автоклав) из инертного материала, например, в тефлоновый автоклав, выдерживающий максимально возможное давление 3,7 Мпа с целью поддержания герметичности автоклава на протяжении всего времени синтеза, и подвергают воздействию микроволнового излучения, создающего в объеме реакционной смеси температуру 100-115°С, в течение 110-115 минут.

Мощность микроволнового излучения составляет 60 Вт, частота излучения 2,45 Ггц. Затем готовят вторую смесь, содержащую воду, бромид цетилтриметиламмония и гидроксид натрия, взятых в мольном соотношении вода:бромид цетилтриметиламмония:гидроксид натрия, равном, соответственно, 1:0,0014-0,0015:0,0038-0,005. В продукт, полученный при воздействии микроволнового излучения на первую смесь, добавляют вторую смесь, взятую в массовом соотношении продукт:смесь, равном 1:1,5-1,7. Образовавшуюся смесь подвергают кристаллизации в тефлоновом автоклаве в течение 180-210 минут при воздействии микроволнового излучения, создающего температуру 180-190°С. Мощность микроволнового излучения составляет 60 Вт, частота излучения 2,45 Ггц. После чего проводят центрифугирование получившейся суспензии в ультрацентрифуге (частота вращения 2000 об/мин). Фильтрат сливают, а твердый белый остаток промывают не менее 4-х раз дистиллированной водой. Затем проводят его сушку в муфельной печи при температуре 100-110°С в течение 10-12 часов, либо при 140-150°С в течение 5-7 часов и прокаливание с целью удаления темплатов (органических структурообразующих добавок) при температуре 500-550°С в течение 5-7 часов с получением целевого продукта.

На фиг. 1 представлена рентгенограмма полученного целевого продукта, которая подтверждает наличие в последнем фазы цеолита MFI и фазы мезопористого материала МСМ-41.

По данным просвечивающей электронной микроскопии (фиг. 2) полученный микро-мезопористый материал содержит 2 фазы: кристаллическую и аморфную. Размер мезопор составляет 3,5-3,7 нм (фиг. 3), что на 0,4-0,6 нм превышает размер пор микро-мезопористого материала, полученного известным способом и составляющего 3,1 нм.

Ниже приведен пример, иллюстрирующий изобретение, но не ограничивающий его. Описываемый способ иллюстрирован на примере получения композита на основе микропористого цеолита и мезопористого оксида кремния - MFI/MCM-41.

Пример.

Проводят приготовление первой смеси. В плоскодонную колбу с магнитной мешалкой заливают 60 мл дистиллированной воды. Затем в нее при перемешивании добавляют 0,26 г изопропоксида алюминия, 11,3 мл 20% раствора гидроксида тетрапропиламмония и медленно - 19,8 мл тетраэтилортосиликата. Перемешивание проводят до полной гомогенизации смеси. Мольное соотношение компонентов в смеси тетраэтилортосиликат:вода:гидроксид тетрапропиламмония : изопропоксид алюминия составляет 1:33,3:0,11:0,013. Затем данную смесь помещают в тефлоновый автоклав с заданным предельным давлением 3,7 МПа и в микроволновой установке SpeedWave Berghof - 4 (мощность микроволнового излучения составляет 60 Вт, частота излучения 2,45 Ггц) подвергают воздействию микроволнового излучения, обеспечивающего температуру реакционной массы 115°С, в течение 110 минут. Затем готовят вторую смесь. Для получения указанной смеси в плоскодонной колбе с магнитной мешалкой смешивают 4,374 г бромида цетилтриметиламмония, 1,44 г гидроксида натрия и 145 мл дистиллированной воды. Мольное соотношении вода:бромид цетилтриметиламмония:гидроксид натрия равно, соответственно, 1:0,0015:0,005.

В продукт, полученный из первой смеси после воздействия на нее микроволнового излучения, добавляют вторую смесь при массовом соотношении продукт:вторая смесь, равном 1:1,6. Образовавшуюся суспензию подвергают кристаллизации в тефлоновом автоклаве под воздействием микроволнового излучения, обеспечивающего температуру суспензии 190°С, в течение 180 минут. Кристаллизацию осуществляют в микроволновой установке SpeedWave Berghof - 4. Мощность микроволнового излучения составляет 60 Вт, частота излучения 2,45 Ггц. Образовавшуюся в автоклаве суспензию подвергают центрифугированию в ультрацентрифуге при частоте вращения 2000 об/мин. Затем сливают фильтрат, а твердый белый осадок промывают не менее 4-х раз дистиллированной водой. После этого проводят его сушку в муфельной печи при температуре 110°С в течение 12 часов. С целью удаления темплата (органических структурообразующих добавок) проводят прокаливание белого порошка при 550°С в течение 6 часов с получением целевого продукта. Затем взвешивают целевой твердый продукт и проводят его рентгенофазовый анализ. Масса твердого продукта составляет 1,8 г. Рентгенограмма твердого продукта подтверждает наличие фазы цеолита MFI и фазы мезопористого материала МСМ-41 (фиг. 1). Размер мезопор материала составляет 3,5 нм, что на 0,4 нм превышает размер пор микро-мезопористого материала, полученного известным способом (фиг. 2, фиг. 3).

Проведение способа при использовании компонентов первой и второй смесей в иных мольных соотношениях, входящих в соответствующие вышеоговоренные соотношения, а также при использовании массовых соотношений продукт:вторая смесь, входящих в интервал, равный 1:1,5-1,7, приводит к аналогичным результатам. Проведение способа при соотношениях, выходящих за рамки указанных интервалов, не приводит к желаемым результатам. Аналогичная зависимость относится и к режимным условиям воздействия микроволнового излучения при проведении описываемого способа.

Таким образом, описываемый способ позволяет увеличить размер мезопор композита, что является неожиданным фактом, значительно сократить время проведения процесса образования микро-мезопористого композита. Возможность проведения стадии кристаллизации при температуре выше температуры известного гидротермального синтеза, что не приводит к разрушению мезопористой фазы, также установлена впервые.

Похожие патенты RU2613516C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ 2016
  • Дедов Алексей Георгиевич
  • Локтев Алексей Сергеевич
  • Караваев Александр Александрович
  • Моисеев Илья Иосифович
RU2617119C1
СПОСОБ ГИДРОКОНВЕРСИИ РАПСОВОГО МАСЛА 2023
  • Дедов Алексей Георгиевич
  • Караваев Александр Александрович
  • Локтев Алексей Сергеевич
  • Вагапова Марика Насрудиновна
RU2806584C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА НА ОСНОВЕ МИКРОПОРИСТОГО ЦЕОЛИТА И КАРБИДА КРЕМНИЯ 2020
  • Дедов Алексей Георгиевич
  • Локтев Алексей Сергеевич
  • Караваев Александр Александрович
  • Митиненко Алексей Сергеевич
  • Исаева Екатерина Андреевна
  • Моисеев Илья Иосифович
RU2725586C1
СПОСОБ ПОЛУЧЕНИЯ П-КСИЛОЛА 2017
  • Дедов Алексей Георгиевич
  • Локтев Алексей Сергеевич
  • Караваев Александр Александрович
  • Моисеев Илья Иосифович
RU2663906C1
КОМПОЗИТ НА ОСНОВЕ НАНОРАЗМЕРНОГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА ZSM-5 В ПРОТОННОЙ ФОРМЕ И КАРБИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2022
  • Дедов Алексей Георгиевич
  • Караваев Александр Александрович
  • Локтев Алексей Сергеевич
  • Вагапова Малика Насрудиновна
RU2799782C1
СПОСОБ КОНВЕРСИИ ИЗОБУТАНОЛА 2021
  • Дедов Алексей Георгиевич
  • Караваев Александр Александрович
  • Локтев Алексей Сергеевич
  • Землянский Пётр Витальевич
RU2768153C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА ZSM-5 С ДОПОЛНИТЕЛЬНОЙ ПОРИСТОСТЬЮ ВНУТРИ ЧАСТИЦ И МЕЖДУ ЧАСТИЦАМИ 2022
  • Дедов Алексей Георгиевич
  • Караваев Александр Александрович
  • Локтев Алексей Сергеевич
  • Вагапова Малика Насрудиновна
RU2800109C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА ZSM-5 В ПРОТОННОЙ ФОРМЕ 2022
  • Дедов Алексей Георгиевич
  • Караваев Александр Александрович
  • Локтев Алексей Сергеевич
  • Землянский Пётр Витальевич
RU2787374C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ЦИНКСОДЕРЖАЩЕГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА ZSM-5 В ПРОТОННОЙ ФОРМЕ ДЛЯ ГЕТЕРОГЕННОГО КАТАЛИЗА 2024
  • Дедов Алексей Георгиевич
  • Караваев Александр Александрович
  • Локтев Алексей Сергеевич
RU2827337C1
Способ получения микро-мезопористого цеолита структурного типа морденит 2023
  • Глотов Александр Павлович
  • Демихова Наталия Руслановна
  • Смирнова Екатерина Максимовна
  • Засыпалов Глеб Олегович
  • Рубцова Мария Игоревна
  • Пимерзин Александр Андреевич
  • Мельников Дмитрий Петрович
  • Винокуров Владимир Арнольдович
  • Ставицкая Анна Вячеславовна
  • Иванов Евгений Владимирович
RU2819615C1

Иллюстрации к изобретению RU 2 613 516 C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА НА ОСНОВЕ МИКРОПОРИСТОГО ЦЕОЛИТА И МЕЗОПОРИСТОГО ОКСИДА КРЕМНИЯ

Изобретение относится к области неорганической химии. Для осуществления способа готовят первую смесь, состоящую из тетраэтилортосиликата, воды, гидроксида тетрапропиламмония и изопропоксида алюминия. Готовят вторую смесь, содержащую воду, бромид цетилтриметиламмония и гидроксид натрия. Первую смесь подвергают воздействию микроволнового излучения при температуре 100-115°С. В полученный продукт добавляют вторую смесь в массовом соотношении продукт:вторая смесь, равном 1:1,5-1,7. Полученную суспензию подвергают кристаллизации под воздействием микроволнового излучения при температуре 180-190°С. Образовавшийся осадок отделяют центрифугированием, промывают, сушат и прокаливают с получением целевого продукта. Технический результат заключается в получении целевого продукта с мезопорами большего размера, чем в целевом продукте, получаемом известным способом, при сокращении времени кристаллизации. 3 ил., 1 пр.

Формула изобретения RU 2 613 516 C1

Способ получения композита на основе микропористого цеолита и мезопористого оксида кремния, заключающийся в том, что готовят первую смесь, состоящую из тетраэтилортосиликата, воды, гидроксида тетрапропиламмония и изопропоксида алюминия, взятых в мольном соотношении тетраэтилортосиликат:вода:гидроксид тетрапропиламмония:изопропоксид алюминия, равном 1:35-40:0,15-0,16:0,012-0,013 и вторую смесь, содержащую воду, бромид цетилтриметиламмония и гидроксид натрия, взятых в мольном соотношении вода:бромид цетилтриметиламмония:гидроксид натрия, равном, соответственно, 1:0,0014-0,0015:0,0038-0,005, первую смесь подвергают воздействию микроволнового излучения при температуре 100-115°С в течение 110-115 минут, затем в полученный продукт добавляют вторую смесь в массовом соотношении продукт:вторая смесь, равном 1:1,5-1,7, полученную суспензию подвергают кристаллизации под воздействием микроволнового излучения при температуре 180-190°С, в течение 180-210 минут, образовавшийся осадок отделяют центрифугированием, промывают, сушат и прокаливают с получением целевого продукта.

Документы, цитированные в отчете о поиске Патент 2017 года RU2613516C1

TEERAWIT PRASOMSRI et al., Mesostructured zeolites: bridging the gsp between zeolites and MCM-41, ChemComm, Royal Society of Cmemistry, 15.04.2015, найдено http://pubs.rsc.org/EN/content/articlepdf/2015/cc/c4cc10391b
P
S
NIPHADKAR et al., Micro-meso-porous composite Sn-MFI/MCM-41 via two-step crystallization process, Microporous and Mesoporous Materials, 136, 2010 p/115-125
US 7470645 B2 30.12.2008
US 20060264318 A1 23.11.2006
US 20040138051 A1 15.07.2004
МИКРОМЕЗОПОРИСТЫЙ КРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Иванова Ирина Игоревна
  • Князева Елена Евгеньевна
  • Добрякова Ирина Вячеславовна
  • Монахова Юлия Викторовна
  • Кожина Ольга Викторовна
  • Тихонова Анна Андреевна
RU2393992C1

RU 2 613 516 C1

Авторы

Дедов Алексей Георгиевич

Локтев Алексей Сергеевич

Караваев Александр Александрович

Левченко Дарья Алексеевна

Моисеев Илья Иосифович

Даты

2017-03-16Публикация

2016-01-29Подача