Настоящее изобретение относится к бортовым автоматическим системам управления движением и стабилизации атмосферного беспилотного летательного аппарата, выполненного по нормальной аэродинамической схеме, совершающего маневры в широком диапазоне скоростей и высот полета, подвергающегося в процессе полета внешним и внутренним возмущающим воздействиям.
Из существующего уровня техники известны способ формирования интегрального адаптивного сигнала стабилизации планирующего движения беспилотного летательного аппарата (RU 2460113, опубл. 02.03.2011), способ формирования сигнала управления и стабилизации продольно-балансировочного движения летательного аппарата (RU 2310899, опубл. 25.05.2006) и система управления угловым движением беспилотного летательного аппарата (RU 2234117, опубл. 13.01.2003).
Недостатками данных технических решений является необходимость введения дополнительных измерительных устройств для измерения скоростного напора, отсутствие учета разбросов параметров объекта - аэродинамических характеристик и невысокая точность управления.
Наиболее близким к предлагаемому изобретению является «Способ формирования сигнала управления и стабилизации продольно-балансировочного движения летательного аппарата и устройство для его осуществления» (RU 2310899, опубл. 25.05.2006).
Этот способ состоит в том, что задают сигнал управления, измеряют сигнал углового положения летательного аппарата, измеряют сигнал угловой скорости летательного аппарата, формируют сигнал рассогласования между заданным сигналом управления и измеренным сигналом углового положения, усиливают сигнал рассогласования, усиливают сигнал угловой скорости, формируют сигнал суммы усиленных сигналов рассогласования и угловой скорости и ограничивают сигнал суммы, масштабируют сигнал рассогласования, интегрируют масштабированный сигнал рассогласования, ограничивают интегральный сигнал и суммируют ограниченный интегральный сигнал с ограниченным сигналом суммы усиленных сигналов рассогласования и угловой скорости.
Недостатками способа, принятого за прототип, являются отсутствие учета априорной информации о возмущающих ветровых воздействиях, отсутствие учета неточностей знания параметров атмосферы и неточностей знания аэродинамических характеристик летательного аппарата.
Решаемой в предложенном способе формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата технической задачей является обеспечение требуемого качества стабилизации углового движения летательного аппарата в широком диапазоне скоростей и высот полета при действии возмущений.
Для решения указанной технической задачи в процессе полета производится идентификация аэродинамических характеристик летательного аппарата на основе восстановления угла атаки, уточнения измеряемой угловой скорости тангажа, измеренных значений угла тангажа и углов отклонения рулевых поверхностей летательного аппарата.
Восстановление угла атаки производится с использованием линейного непрерывного фильтра Калмана с учетом погрешностей измерений нормального ускорения и угловой скорости тангажа.
Сущность способа заключается в определении коэффициентов усиления контура угловой стабилизации летательного аппарата на основе уточняемых аэродинамических характеристик.
Последовательность способа формирования сигнала стабилизации продольного углового движения описывается следующим образом.
Продольное возмущенное движение описывается следующими уравнениями (1):
где α, ϑ, δ - углы атаки, тангажа и отклонения рулевых поверхностей летательного аппарата соответственно,
ωz - угловая скорость тангажа,
ny - нормальная перегрузка,
ϑи, ωzи - измеренные значения угла тангажа и угловой скорости тангажа соответственно,
, , , ,
, , , - производные аэродинамических коэффициентов летательного аппарата по углам α и δ,
S, L - характерные площадь и длина летательного аппарата соответственно,
V - скорость летательного аппарата,
g - ускорение силы тяжести,
q - скоростной напор,
m - масса летательного аппарата,
Iz - момент инерции летательного аппарата относительно оси OZ связанной системы координат,
- изменение угловой скорости угла атаки за счет ветрового воздействия,
а в - возмущающее угловое ускорение по каналу тангажа, Т - постоянная времени рулевого привода,
ϑпр - программное значение угла тангажа,
- коэффициенты усиления контура стабилизации тангажа,
σ - сигнал стабилизации продольного углового движения беспилотного летательного аппарата.
Математическая модель измерений описывается системой уравнений (2)
Здесь nуи, δи - измеренные значения нормальной перегрузки и углов отклонения рулевых поверхностей соответственно,
- ошибки измерений угловой скорости тангажа и нормальной перегрузки соответственно.
Восстановление угла атаки проводится на основе линейного непрерывного фильтра Калмана-Бьюси (ФКБ).
Векторные уравнения ФКБ (3) приведены ниже:
где - вектор оцениваемых параметров,
А - матрица правой части математической модели движения (1),
u - вектор известных составляющих правой части,
Р - матрица ковариаций ошибки оценки в процессе оценки,
Н - известная матрица правой части модели измерений,
R - матрица ковариаций шумов измерений,
Q - матрица ковариаций внешних возмущений.
Восстановление угла атаки, а также оценка измеряемой с погрешностью угловой скорости тангажа, проводятся с использованием следующих уравнений (4):
Здесь - оценки угла атаки и угловой скорости, - априорные дисперсии измерений, - априорная дисперсия угловой скорости ветрового порыва.
На основании уравнения (1) можно записать выражение для определения реализованного коэффициента :
Сформированный сигнал стабилизации продольного углового движения беспилотного летательного аппарата имеет вид (6):
где - скорректированные в соответствии с формулами (7) коэффициенты усиления контура стабилизации продольного углового движения
Здесь а20 - значение коэффициента а2 для номинальных аэродинамических характеристик, - коэффициенты усиления, обеспечивающие выполнение требований к качеству переходных процессов при номинальных аэродинамических характеристиках, D - добротность рулевого привода, а и а0 вычисляются по формулам (8):
Предложенная схема коррекции коэффициентов контура стабилизации на основе идентифицированных аэродинамических коэффициентов позволяет повысить качество переходных процессов отработки возмущений.
Эффективность принятого подхода к коррекции коэффициентов в процессе полета подтверждена результатами анализа и математического моделирования.
Все составные операции способа могут быть выполнены программно-алгоритмически в бортовых вычислительных машинах беспилотных летательных аппаратов.
название | год | авторы | номер документа |
---|---|---|---|
Способ формирования адаптивного сигнала угловой стабилизации по крену летательного аппарата | 2023 |
|
RU2809632C1 |
Способ формирования адаптивного сигнала управления боковым движением летательного аппарата | 2017 |
|
RU2650307C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК УПРАВЛЯЕМОГО СНАРЯДА В ПОЛЕТЕ, СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ УПРАВЛЯЕМОГО СНАРЯДА В ПОЛЕТЕ, СПОСОБ СТАБИЛИЗАЦИИ УГЛОВОГО ПОЛОЖЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА И УСТРОЙСТВА ДЛЯ ИХ ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2218550C2 |
СПОСОБ ФОРМИРОВАНИЯ ИНТЕГРАЛЬНОГО АДАПТИВНОГО СИГНАЛА СТАБИЛИЗАЦИИ ПЛАНИРУЮЩЕГО ДВИЖЕНИЯ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2460113C1 |
Способы определения значений углов ориентации в процессе движения летательного аппарата и коррекции значений углов ориентации | 2020 |
|
RU2776856C2 |
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ И СТАБИЛИЗАЦИИ ПРОДОЛЬНО-БАЛАНСИРОВОЧНОГО ДВИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2310899C1 |
ДИСТАНЦИОННАЯ РЕЗЕРВИРОВАННАЯ СИСТЕМА АВТОМАТИЗИРОВАННОГО МОДАЛЬНОГО УПРАВЛЕНИЯ В ПРОДОЛЬНОМ КАНАЛЕ МАНЕВРЕННЫХ ПИЛОТИРУЕМЫХ И БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ | 2015 |
|
RU2645589C2 |
СПОСОБ УПРАВЛЕНИЯ СКОРОСТЬЮ ПОЛЕТА РАКЕТЫ НОРМАЛЬНОЙ АЭРОДИНАМИЧЕСКОЙ СХЕМЫ С Х-ОБРАЗНО РАСПОЛОЖЕННЫМИ РУЛЯМИ | 2012 |
|
RU2510485C2 |
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПОЛЕТОМ ВЫСОКОМАНЕВРЕННОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 2010 |
|
RU2446429C1 |
СИСТЕМА ДЛЯ ПРОГНОЗИРОВАНИЯ РЕЗУЛЬТАТОВ НАТУРНЫХ ИСПЫТАНИЙ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 1999 |
|
RU2163387C1 |
Изобретение относится к способу формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата. Для формирования сигнала производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла атаки определенным образом, измеренных углов тангажа, углов отклонения рулевых поверхностей, угловой скорости тангажа, а также нормального ускорения. Корректируют коэффициенты усиления контура стабилизации продольного углового движения летательного аппарата, формируют сигнал стабилизации продольного углового движения беспилотного летательного аппарата на основе скорректированных коэффициентов. Обеспечивается требуемое качество стабилизации углового движения летательного аппарата в широком диапазоне скоростей и высот полета при действии возмущений.
Способ формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата, при котором производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла атаки, измеренных углов тангажа, углов отклонения рулевых поверхностей, угловой скорости тангажа, а также нормального ускорения, при этом восстановление угла атаки производят с использованием линейного непрерывного фильтра Калмана-Бьюси с учетом погрешностей измерения нормального ускорения и угловой скорости тангажа, корректируют коэффициенты усиления контура стабилизации продольного углового движения беспилотного летательного аппарата, формируют сигнал стабилизации продольного углового движения беспилотного летательного аппарата на основе скорректированных коэффициентов.
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ И СТАБИЛИЗАЦИИ ПРОДОЛЬНО-БАЛАНСИРОВОЧНОГО ДВИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2310899C1 |
СПОСОБ ФОРМИРОВАНИЯ ИНТЕГРАЛЬНОГО СИГНАЛА СТАБИЛИЗАЦИИ ПЛАНИРУЮЩЕГО ДВИЖЕНИЯ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2459744C1 |
СПОСОБ ФОРМИРОВАНИЯ ИНТЕГРАЛЬНОГО АДАПТИВНОГО СИГНАЛА СТАБИЛИЗАЦИИ ПЛАНИРУЮЩЕГО ДВИЖЕНИЯ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2460113C1 |
US 8000849 B2, 16.08.2011 | |||
US 20160059961 A1, 03.03.2016. |
Авторы
Даты
2017-04-03—Публикация
2016-03-17—Подача