Изобретение относится к биотехнологии и вирусологии и может быть использовано специалистами, работающими в области производства медицинских и ветеринарных биопрепаратов.
Известен способ определения иммуногенной активности вакцины против бешенства, который включает однократное интраперитониальное введение белым мышам пяти разведений референтной вакцины и исследуемых вакцин (10 голов на каждую вакцину), отбор крови и получения сывороток крови на 14 сутки после иммунизации, исследования в сыворотках крови титров антирабических антител методом ИФА, построение калибровочной кривой с показателями индексов иммуногенности разведений референс-вакцины (в МЕ/доза) и соответствующих титров антирабических антител (в МЕ/см3), полученных при исследовании сывороток крови вакцинированных референтной вакциной мышей, проекцию значений титров антирабических антител, полученных при исследовании сывороток крови мышей, вакцинированных исследуемыми вакцинами, в калибровочную кривую, сравнение значений и определения иммуногенной активности исследуемых вакцин, отличающихся тем, что определение иммуногенной активности осуществляют путем сравнения поствакцинальных титров антирабических антител, полученных после введения пяти разведений референс-вакцины и исследуемой вакцины с использованием разработанного шаблона [HIKITOBA А.П. Формування антирабiчного Iммунiтету та вдосконалення методiв контролю iммуногенностi iнактивированних антирабiчных вакцин: дисс.канд. веет.наук 16.00.03 - ветеринарна мiкробiологiя, епiзоотологiя, iнфекцiйнi хвороби та iмунологiя НIКITОBА АЛIНА ПЕТРIВНА. - 2015. - Киiв - 133 с.].
Недостатком этого способа является длительность и сложность постановки опыта, использование мышей, а не целевых животных, обнаруживаемой низкой корреляцией теста NIH и уровнем вируснейтрализующих антител у иммунизированных целевых животных.
Известен также способ определения иммуногенной активности вакцины против бешенства [метод NIH (United States National Institutes of Health)]. Данный тест был разработан в США в 1953, рекомендованный ВОЗ для определения иммуногенной активности инактивированных антирабических вакцин и в неизмененном виде используется до сих пор. Несмотря на широкое использование этого теста, рядом авторов отмечены определенные недостатки постановки этого метода: интрацеребральное заражение мышей не воспроизводит естественный путь попадания вируса в организм животного, а сам тест предусматривает 2 вакцинации с интервалом в 7 дней, что может маскировать настоящие результаты теста и завышать результаты в вакцинах с низкой иммуногенной активностью [Kulpa-Eddya J. Non-animal replacement methods for veterinary vaccine potency testing: state of the science and future directions / J. Kulpa-Eddya, G. Srinivasb, M. Halderc [et al.] // Procedia in Vaccinology. - 2011. - Vol. 5. - P. 60-83; Kumar M. Development of alternative approaches for in-process quality control of rabies vaccine / M. Kumar, R.P. Singh, B. Mishra [et al.] // Advances in animal and veterinary sciences. - 2014. - Vol. 2 (3). - P. 164-170; Nedosekov V. Critical review of the NIH-method for testing potency of inactivated rabies vaccines / V. Nedosekov // Ветеринарна медицина . - 2013. - №10. - С.26-29].
Недостатком этого способа также является его длительность (более 14 дней) и сложность постановки опыта, использование животных. К этому следует добавить риск опасности для персонала при работе с живым вирусом бешенства, который относится к возбудителям II группы патогенности. Также существуют проблемы, связанные с гуманным обращением с животными, так как интрацеребральное введение вируса «жестокое», как и сам ход болезни.
Техническим результатом изобретения является упрощение и ускорение способа.
Технический результат достигается в способе определения иммуногенной активности вакцины против бешенства путем исследования ее тем, что в лунки полистирольных планшетов вносят моноклональные антитела, специфичные к гликопротеину вируса бешенства, в 0,1-0,2 М фосфатном буфере с pH 7,2-7,4 из расчета 1,0-2,0 мкг на лунку, инкубируют 45-60 мин при комнатной температуре, затем добавляют 1,0-1,5% раствор бычьего сывороточного альбумина в 0,1-0,2 фосфатном буфере с pH 7,2-7,4 с добавлением в него 0,1-0,25% Tween-20, инкубируют при комнатной температуре 30-40 мин, далее в лунки полистирольных планшетов вводят испытуемые вакцины и референс-вакцину в разведениях от 1:10 до 1:320 в 0,1-0,2 М фосфатном буфере с pH 7,2-7,4, инкубируют 45-60 мин при комнатной температуре, далее пятикратно отмывают лунки полистирольных планшетов 0,1-0,2 М фосфатным буфером с PH 7,2-7,4, содержащим 0,1-0,8% Tween-20 с последующим добавлением конъюгата моноклональных антител, специфичных к гликопротеину вируса бешенства, с пероксидазой хрена в рабочем титре 1:5000-6000, инкубируют 45-60 мин при комнатной температуре, затем добавляют 100-120 мкл на лунку полистирольных планшетов однокомпонентного субстратного раствора ТМБ-теста с экспозицией 10-15 минут, после чего добавляют в каждую лунку по 50-60 мкл 0,5-0,6 М раствор H2SO4 и измеряют величину оптической плотности раствора при длине волны 450 нм, а иммуногенную активность вакцин против бешенства определяют на основании сопоставления сигналов оптической плотности раствора исследуемого образца, и сравнения его с сигналом оптической плотности раствора референс-вакцины.
Известен бычий сывороточный альбумин (сокращенно БСА, англ. Bovine Serum Albumin, BSA) - белок плазмы крови крупного рогатого скота с молекулярной массой 69000 ДHYPERLINK “https://ru.wikipedia.org/wiki/%D0%94%D0%B0%D0%BB%D1%8C%D1%82%D0%BE%D0%BD"a. одноцепочечный, состоящий из 607 аминокислотных остатков, /https://ru.wikipedia.org/wiki/Бычий_сывороточный_альбумин/.
Полисорбат 20 (международное название - Tween-20). Химическая формула: C58H114O26. Это прозрачная вязкая жидкость от желтого до желто-зеленого цвета. Плотность примерно 1,1 г/мл. Растворяется в растительном масле. Используется как основа для растворения эфирных масел для парфюмерных композиций на водной основе, эффективен даже при высоких концентрациях эфирных масел. Используется в спреях-репеллентах, спреях для тела, продуктах для ванн и освежителях воздуха, в качестве стабилизатора и регулятора вязкости в шампунях, жидком мыле и кондиционерах. Используется также, как и полисорбат 80, в скрабах из сахара и соли. [Ayorinde FO, Gelain SV, Johnson JH Jr, Wan LW. (2000). "Analysis of some commercial polysorbate formulations using matrix-assisted laser desoiption/ionization time-of-flight mass spectrometry". Rapid Communications in Mass Spectrometry 14 (22): 2116-2124].
Известен однокомпонентный субстратный раствор (ТМБ-тест), изготовленный в соответствии с ТУ 9389-038-05784466-2013 и предлагаемый к продаже, представляет собой бесцветную жидкость, содержащую стабилизированный водно-органический буферный раствор ТМБ и пероксида водорода. Известен ТМБ - 3,3',5,5'-тетраметилбензидина гидрохлорида - (Патент РФ №2268253, Композиция для хранения водного раствора 3,3',5,5'-тетраметилбензидина гидрохлорида (ТМБ) и пероксида мочевины, МПК C07C 211/43, C12Q l/00, опубл. 20.01.2006, Бюл. №02).
Известно использование лунок полистирольных планшетов для проведения иммуноферментного анализа (А.М. Егоров, А.П. Осипов и др. Теория и практика иммуноферментного анализа, М., Высшая школа, 1991. - с.275).
Конъюгат моноклональных антител, специфичных к гликопротеину вируса бешенства, меченный ферментом пероксидазой хрена, готовят в соответствии с "Временной инструкцией по изготовлению и контролю антивидовых иммуноглобулинов, меченных ферментом пероксидазой", утвержденной ГУВ МСХ СССР 9.12.85 ТУ 46-21-78-85 (3) / Патент РФ №2196609, Набор для ретроспективной иммуноферментной диагностики инфекционного ринотрахеита животных, МПК A61K 39/265, G01N 33/569, G01N 33/535, G01N 33/543, опубл. 20.01.2003; А.М. Егоров, А.П. Осипов и др. Теория и практика иммуноферментного анализа, М., Высшая школа, 1991 - с. 271/.
Референс-вакцина производится по технологии, разработанной во «ВНИТИБП» и переданной на ФКП "Щелковский биокомбинат" - СТО-00494189-0042-2010.1. Пухова Н.М. Создание национального отраслевого стандарта имуногенности антирабических вакцин /Н.М. Пухова, А.Я. Самуйленко, И.В. Иванов [и др.] // ж. Ветеринарная медицина. - 2011. - №95. - С. 178/.
В патентной и научно-технической литературе не известны технические решения, содержащие режимы определения иммуногенной активности вакцины против бешенства аналогичные заявляемому, т.е. предложение соответствует критерию «новизны».
Все режимы способа осуществимы в промышленных условиях, направлены на решение реальной технической задачи, т.е. предложение «промышленно применимо».
На основе данных, полученных при изучении молекулярной структуры вируса бешенства, установлено, что основные антигенные детерминанты, индуцируют защитный иммунный ответ, находятся на гликопротеине, содержание которого коррелирует с иммуногенностью вакцин против бешенства [Pizza А.Т. Effect of the Contents and Form of Rabies Glycoprotein on the Potency of Rabies Vaccination in Cattle / A.T. Piza, K.M.S. Pieri, G.M. Lusa [et al.] // Mem. Inst. Oswaldo Cruz. - 2002. - Vol. 97. - P. 265-268; Rooijakker E.J.M. Rabies vaccine potency control: comparison of ELISA systems for antigenicity testing / E.J.M. Rooijakker, J.P. Uittenbogaard, J. Groerf // Journal of Virological Methods. - 1996. - Vol. 58. - P. 111-119.]. Поэтому, при оценке качества вакцин Комитет экспертов ВОЗ с 1992 года предлагает использовать альтернативные методы in vitro, которые уже с 1984 совершенствуются для определения содержания антигенов в вакцинах. Данный подход нашел успешное применение для определения концентрации РНК желтой геморрагической лихорадки, человеческого герпес вируса-6 и цитомегаловируса. Однако способы количественного определения вышеприведенных вирусов непригодны для исследования вакцинного материала против бешенства и не могут дать оценку иммуногенности вакцин против бешенства.
Нами впервые предложен способ определения иммуногенной активности вакцины против бешенства на основе определения гликопротеина вируса бешенства при использовании молекулярно-генетических методов. Предложенный способ позволяет сократить время исследования до 3 часов и существенно упростить процесс определения иммуногенной активности вакцины против бешенства, т.е. предложение соответствует критериям «новизна» и «изобретательский уровень».
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1.
В лунки полистирольных планшетов вносят моноклональные антитела, специфичные к гликопротеину вируса бешенства, в 0,1 М фосфатном буфере с pH 7,2 из расчета 1,0 мкг на лунку, инкубируют 45 мин при комнатной температуре, затем после двукратной отмывки 0,1М фосфатным буфером с pH 7,2-7,4 и с 0,1% Tween-20 добавляют 1,0% раствор бычьего сывороточного альбумина в 0,1М фосфатном буфере с pH 7,2 с добавлением в него 0,1% Tween-20, инкубируют при комнатной температуре 30 мин, двукратно отмывают лунки 0,1М фосфатным буфером с pH 7,2-7,4 с 0,1% Tween-20, далее в лунки полистирольных планшетов вводят испытуемые вакцины и референс-вакцину в разведениях от 1:10 до 1:320 в 0,1М фосфатном буфере с PH 7,2, инкубируют 45 мин при комнатной температуре, далее пятикратно отмывают лунки полистирольных планшетов 0,1М фосфатным буфером с pH 7,2, содержащим 0,1% Tween-20 с последующим добавлением конъюгата моноклональных антител, специфичных к гликопротеину вируса бешенства, с пероксидазой хрена в рабочем титре 1:5000. Конъюгат моноклональных антител, специфичный к гликопротеину вируса бешенства, с пероксидазой хрена инкубируют 45 мин при комнатной температуре, затем после пятикратной отмывки лунок 0,1М фосфатным буфером с pH 7,2-7,4, содержащим 0,1% Tween-20, добавляют 100 мкл на лунку полистирольных планшетов однокомпонентного субстратного раствора ТМБ-теста с экспозицией 10 минут, после чего добавляют в каждую лунку по 50 мкл 0,5 М раствор H2SO4 и измеряют величину оптической плотности раствора при длине волны 450 нм, а иммуногенную активность вакцин против бешенства определяют на основании сопоставления сигналов оптической плотности раствора исследуемого образца, и сравнения его с сигналом оптической плотности раствора референс-вакцины. Иммуногенность исследуемой инактивированной вакцины против бешенства, определенная методом NIH и заявляемым способом составила в международных единицах 3 МЕ/мл.
(Для конъюгации пероксидазы хрена с антителами, моноклональные антитела, специфичные к гликопротеину вируса бешенства, переводят в 0,1 М Na-карбонатный буфер, pH 9,5 с помощью обычного диализа или для этой процедуры используют колонки на основе Сефадекса-25 для смены буфера фирмы GE Healthcare (NAP-5, NAP-10, PD-10). Навеску 2 мг пероксидазы растворяют в 0,4 мл бидистиллированной воды. Готовят раствор 0,1М перйодата натрия в бидистиллированной воде, и сразу же добавляют 0,1 мл этого раствора к раствору пероксидазы. Быстро перемешивают, обертывают пробирку с реакционной смесью фольгой (реакция должна проводиться в темноте) и инкубируют в течение 20 мин при комнатной температуре при постоянном перемешивании. Признаком образования активной формы пероксидазы служит изменение окраски раствора фермента с желто-коричневой на зеленоватую. Активированную пероксидазу переводят в буфер пришивки (1 мМ ацетат натрия pH 4,4 на колонке), используя колонку для смены буфера. Далее на 2 мг активированной пероксидазы необходимо взять 1 мг моноклональных антител. Раствор антител к пероксидазе (активированной) добавляется в 0,1 М Na-карбонатном буфере, pH 9,5. Инкубацию реакционной смеси проводят при перемешивании на шейкере в течение 40 минут при +37°C в пробирке, обернутой фольгой. Готовят свежий раствор борогидрида натрия, растворив 2 мг в 0,5 мл бидистиллированной воды. Добавляют 0,1 мл полученного раствора к реакционной смеси и инкубируют 20 мин при +37°C. Конъюгат антител с пероксидазой переводят в буфер хранения натрий-фосфатный буфер (PBS) на колонке для смены буфера или методом диализа - см. А.М. Егоров, А.П. Осипов и др. Теория и практика иммуноферментного анализа, М., Высшая школа, 1991. - с. 271).
Пример 2.
В лунки полистирольных планшетов вносят моноклональные антитела, специфичные к гликопротеину вируса бешенства, в 0,2 М фосфатном буфере с pH 7,4 из расчета 2,0 мкг на лунку, инкубируют 60 мин при комнатной температуре, лунки двукратно отмывают 0,2М фосфатным буфером с pH 7,4, содержащим 0,8% Tween-20, затем добавляют 1,5% раствор бычьего сывороточного альбумина в 0,2М фосфатном буфере с pH 7,4 с добавлением в него 0,25% Tween-20, инкубируют при комнатной температуре 40 мин, двукратно отмывают лунки 0,2М фосфатным буфером с pH 7,4, содержащим 0,8% Tween-20, далее в лунки полистирольных планшетов вводят испытуемые вакцины и референс-вакцину в разведениях от 1:10 до 1:320 в 0,2М фосфатном буфере с РН 7,4, инкубируют 60 мин при комнатной температуре, далее пятикратно отмывают лунки полистирольных планшетов 0,2 М фосфатным буфером с pH 7,4, содержащим 0,8% Tween-20 с последующим добавлением конъюгата моноклональных антител, специфичных к гликопротеину вируса бешенства, с пероксидазой хрена в рабочем титре 1:6000. Конъюгат моноклональных антител, специфичный к гликопротеину вируса бешенства, с пероксидазой хрена инкубируют 60 мин при комнатной температуре, затем после пятикратной отмывки лунок 0,2М фосфатным буфером с pH 7,2-7,4, содержащим 0,8% Tween-20, добавляют 120 мкл на лунку полистирольных планшетов однокомпонентного субстратного раствора ТМБ-теста с экспозицией 15 минут, после чего добавляют в каждую лунку по 60 мкл 0,6 М раствор H2SO4 и измеряют величину оптической плотности раствора при длине волны 450 нм, а иммуногенную активность вакцин против бешенства определяют на основании сопоставления сигналов оптической плотности раствора исследуемого образца, и сравнения его с сигналом оптической плотности раствора референс-вакцины. Иммуногенность исследуемой инактивированной вакцины против бешенства, определенная методом NIH и заявляемым способом составила в международных единицах 2,8 МЕ/мл.
Таким образом, заявленное предложение при сохранении чувствительности и точности способа позволяет сократить способ определения иммуногенной активности вакцины против бешенства с 21 суток до 3 часов. Кроме того, способ позволяет исключить работу персонала лабораторий с живым вирусом бешенства штамма «CVS», отказе от использования большого количества животных. Заявляемый способ обеспечивает простоту и безопасность работы.
название | год | авторы | номер документа |
---|---|---|---|
ПРЕПАРАТ НА ОСНОВЕ НЕЙТРАЛИЗУЮЩИХ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ, СВЯЗЫВАЮЩИХСЯ С ГЛИКОПРОТЕИНОМ ВИРУСА БЕШЕНСТВА | 2018 |
|
RU2711553C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕСТ-СИСТЕМЫ "ХАНТА-N" ДЛЯ ОПРЕДЕЛЕНИЯ СПЕЦИФИЧЕСКОЙ АКТИВНОСТИ ВАКЦИНЫ ПРОТИВ ГЕМОРРАГИЧЕСКОЙ ЛИХОРАДКИ С ПОЧЕЧНЫМ СИНДРОМОМ | 2012 |
|
RU2590606C2 |
Способ оценки уровня антител, специфичных к различным вариантам HBsAg вируса гепатита В | 2016 |
|
RU2616236C1 |
ШТАММ ГИБРИДНЫХ КЛЕТОК ЖИВОТНОГО Mus musculus L. - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ ДЛЯ ВЫЯВЛЕНИЯ БЕЛКА VP40 ВИРУСА МАРБУРГ (ШТАММ Рорр) (ВАРИАНТЫ), МОНОКЛОНАЛЬНОЕ АНТИТЕЛО, ПРОДУЦИРУЕМОЕ ШТАММОМ (ВАРИАНТЫ), НАБОР ДЛЯ ИММУНОФЕРМЕНТНОЙ ТЕСТ-СИСТЕМЫ ФОРМАТА "СЭНДВИЧ" ДЛЯ ВЫЯВЛЕНИЯ МАТРИКСНОГО БЕЛКА VP40 ВИРУСА МАРБУРГ (ШТАММ Рорр) | 2008 |
|
RU2395575C1 |
ШТАММ ГИБРИДНЫХ КЛЕТОК ЖИВОТНОГО Mus musculus L.- ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ ДЛЯ ВЫЯВЛЕНИЯ БЕЛКА VP40 ВИРУСА ЭБОЛА, СУБТИП ЗАИР (ШТАММ Mainga) (ВАРИАНТЫ), МОНОКЛОНАЛЬНОЕ АНТИТЕЛО, ПРОДУЦИРУЕМОЕ ШТАММОМ (ВАРИАНТЫ), И НАБОР ДЛЯ ИММУНОФЕРМЕНТНОЙ ТЕСТ-СИСТЕМЫ ФОРМАТА "СЭНДВИЧ" ДЛЯ ВЫЯВЛЕНИЯ БЕЛКА VP40 ВИРУСА ЭБОЛА, СУБТИП ЗАИР (ШТАММ Mainga) | 2008 |
|
RU2395577C1 |
ШТАММ ГИБРИДНЫХ КЛЕТОК ЖИВОТНОГО MUS MUSCULUS L. 3F9 - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ, ПРИГОДНЫХ ДЛЯ ИСПОЛЬЗОВАНИЯ В ИММУНОФЕРМЕНТНОЙ СИСТЕМЕ ФОРМАТА "СЭНДВИЧ" ДЛЯ ВЫЯВЛЕНИЯ БЕЛКА VP35 ВИРУСА МАРБУРГ, И МОНОКЛОНАЛЬНЫЕ АНТИТЕЛА 3F9, ПРОДУЦИРУЕМЫЕ УКАЗАННЫМ ШТАММОМ ГИБРИДНЫХ КЛЕТОК | 2008 |
|
RU2393220C1 |
ВАКЦИННАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ БЕЛОК РЕСПИРАТОРНО-СИНЦИТИАЛЬНОГО ВИРУСА (ВАРИАНТЫ) | 1994 |
|
RU2160119C2 |
ИММУНОФЕРМЕНТНАЯ ТЕСТ-СИСТЕМА ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МИКОПОЛИСАХАРИДОВ И ИХ ПРОИЗВОДНЫХ В ПЫЛИ ОКРУЖАЮЩЕЙ СРЕДЫ | 2013 |
|
RU2543323C2 |
Иммуноферментная тест-система для выявления антител к BLV в сыворотке крови, молоке крупного рогатого скота | 2023 |
|
RU2800607C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ПОСТВАКЦИНАЛЬНОГО ИММУНИТЕТА К АНТИГЕНАМ ВАКЦИНЫ "ПНЕВМО-23" | 2006 |
|
RU2331074C2 |
Изобретение относится к биотехнологии и вирусологии и может быть использовано специалистами, работающими в области производства медицинских и ветеринарных биопрепаратов. Изобретение раскрывает способ определения иммуногенной активности вакцины против бешенства, отличающийся тем, что в лунки планшетов вносят моноклональные антитела, специфичные к гликопротеину вируса бешенства, в 0,1-0,2 М фосфатном буфере с pH 7,2-7,4, инкубируют, добавляют 1,0-1,5% раствор бычьего сывороточного альбумина в 0,1-0,2 фосфатном буфере с pH 7,2-7,4 с добавлением в него 0,1-0,25% Tween-20, инкубируют, вводят испытуемые вакцины и референс-вакцину, инкубируют 45-60 мин при комнатной температуре, отмывают лунки планшетов 0,1-0,2 фосфатным буфером с pH 7,2-7,4, содержащим 0,1-0,8% Tween-20 с последующим добавлением конъюгата моноклональных антител, специфичных к гликопротеину вируса бешенства, с пероксидазой хрена в рабочем титре 1:5000-6000, инкубируют, добавляют 100-120 мкл на лунку однокомпонентного субстратного раствора ТМБ-теста с экспозицией 10-15 минут, после чего добавляют в каждую лунку по 50-60 мкл 0,5-0,6 М раствор H2SO4 и измеряют величину оптической плотности раствора при длине волны 450 нм, а иммуногенную активность вакцин против бешенства определяют на основании сопоставления сигналов оптической плотности раствора исследуемого образца, и сравнения его с сигналом оптической плотности раствора референс-вакцины. Изобретение направлено на ускорение и упрощение определения иммуногенной активности вакцины против бешенства. 2 пр.
Способ определения иммуногенной активности вакцины против бешенства путем ее исследования, отличающийся тем, что в лунки полистирольных планшетов вносят моноклональные антитела, специфичные к гликопротеину вируса бешенства, в 0,1-0,2 М фосфатном буфере с рН 7,2-7,4 из расчета 1,0-2,0 мкг на лунку, инкубируют 45-60 мин при комнатной температуре, затем добавляют 1,0-1,5% раствор бычьего сывороточного альбумина в 0,1-0,2 фосфатном буфере с рН 7,2-7,4 с добавлением в него 0,1-0,25% Tween-20, инкубируют при комнатной температуре 30-40 мин, далее в лунки полистирольных планшетов вводят испытуемые вакцины и референс-вакцину в разведениях от 1:10 до 1:320 в 0,1-0,2 М фосфатном буфере с рН 7,2-7,4, инкубируют 45-60 мин при комнатной температуре, далее пятикратно отмывают лунки полистирольных планшетов 0,1-0,2 фосфатным буфером с рН 7,2-7,4, содержащим 0,1-0,8% Tween-20 с последующим добавлением конъюгата моноклональных антител, специфичных к гликопротеину вируса бешенства, с пероксидазой хрена в рабочем титре 1:5000-6000, инкубируют 45-60 мин при комнатной температуре, затем добавляют 100-120 мкл на лунку полистирольных планшетов однокомпонентного субстратного раствора ТМБ-теста с экспозицией 10-15 минут, после чего добавляют в каждую лунку по 50-60 мкл 0,5-0,6 М раствор H2SO4 и измеряют величину оптической плотности раствора при длине волны 450 нм, а иммуногенную активность вакцин против бешенства определяют на основании сопоставления сигналов оптической плотности раствора исследуемого образца, и сравнения его с сигналом оптической плотности раствора референс-вакцины.
J | |||
KULPA-EDDYA et al | |||
Non-animal replacement methods for veterinary vaccine potency testing: state of the science and future directions | |||
Procedia in Vaccinology | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
Vol | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
P | |||
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИММУНОГЕННОЙ АКТИВНОСТИ ПРОТИВОЯЩУРНЫХ ВАКЦИН | 1996 |
|
RU2111764C1 |
Способ определения иммуногенной активности вакцины против сибирской язвы крупного рогатого скота | 1990 |
|
SU1789218A1 |
MCFARLAND R | |||
et al | |||
Non-animal replacement methods for human vaccine potency testing: state of the science and future directions | |||
Procedia in Vaccinology | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
Vol | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
P | |||
Устройство для электрической сигнализации | 1918 |
|
SU16A1 |
Авторы
Даты
2017-04-18—Публикация
2016-05-31—Подача