КАТАЛИТИЧЕСКИЙ СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД Российский патент 2017 года по МПК B01J20/18 B01J20/06 

Описание патента на изобретение RU2617492C1

Изобретение относится к области охраны окружающей среды, а именно к очистке природных и сточных вод от соединений железа и марганца.

Известен сорбент, очищающий воду от ионов мышьяка с разной валентностью (патент US №6921732, МПК B01J 20/06, опубл. 26.07.2005 г.). Сорбент представляет собой цеолит, покрытый нанофазными оксидами железа и марганца, причем сорбент содержит 0,25-10% оксида железа с молярным соотношением Mn/(Mn+Fe), равным 0,10. Сорбент получают путем добавления цеолита к железо-марганцевому раствору, приготовленному смешением раствора оксида железа с марганецсодержащим соединением. Эту смесь фильтруют и из отфильтрованного продукта методом сушки получают сорбент в виде цеолита, покрытого нанофазными гидроксидами железа и марганца.

Однако данный материал позволяет удалять из воды только ионы мышьяка и не применяется для очистки воды от ионов железа и марганца. При этом наибольшая концентрация загрязнения воды, при которой достигается высокая степень очистки, сравнительно мала: 1,57 мг/дм3 (ppm). Кроме того, в процессе очистки от As (III), широко распространенного в природных условиях, высвобождаются ионы марганца Mn (II), которые также являются загрязнителями воды.

Известен способ получения гранулированного фильтрующего материала (патент RU №2162737, опубл. 10.02.2001). Доломит подвергают измельчению и классификации до фракции 0,3-1,5 мм. Полученный полупродукт подвергают отжигу в атмосфере воздуха при температуре 500-900°C в течение 1-3 ч. Затем остужают до комнатной температуры и обрабатывают раствором, содержащим ионы двухвалентного марганца (Mn2+~0,01-0,2 моль/л). После этого раствор сливают, а материал подвергают сушке при 100-200°C. К недостаткам данного способа относится то, что обработка по данному способу является энергоемкой, поскольку производится при высокой температуре 900°C. Другим недостатком является то, что при разложении марганца двухлористого выделяется хлор, который не утилизируется, а непосредственно выбрасывается в атмосферу.

Известно изобретение (патент RU №2229336, опубл. 27.05.2004), в котором используется носитель - бентонитовая глина, которую термообрабатывают при температуре 1200°C, затем проводят активацию азотной кислотой. Предложен сорбционно-фильтрующий материал для очистки воды, содержащий диоксид марганца на алюмосиликатной основе, в качестве которого он содержит бентонитовую глину, подвергнутую последовательно термической и кислотной активации, при этом он содержит компоненты при следующем соотношении, мас. %: диоксид марганца - 10-14, активированная бентонитовая глина - остальное. Способ получения заключается в термоактивации бентонита, кислотной обработке и обработке растворами Mn и KMnO. Недостаток - в использовании кислоты, которую необходимо нейтрализовать. Кроме того, бентонитовая глина в процессе приготовления сорбционно-фильтрующего материала проходит термообработку, что влечет затраты на электроэнергию.

Известен обезжелезивающий фильтрующий материал (патент RU №2184600, опубл. 10.07.2002). Обезжелезивающий фильтрующий материал содержит, мас. %: мел 13-36, пиролюзит 10-33, жидкое стекло 48,96-52,18, кремнефтористый натрий 1,82-5,04. Недостатком которого является искусственное получение фильтрующего материала, кроме того, он трудоемок в изготовлении, поскольку сушка длится 1 сутки, а термообработка длится 20-30 часов при температуре 120-130°C, это энергозатратно, также этот материал дорог в изготовлении, поскольку получается искусственным путем.

Известен способ получения сорбента [RU 2031705 C1, 1995], включающий дробление пористого силикатного носителя, насыщение раствором модифицирующего реагента и последующую термообработку при температуре разложения модифицирующего реагента. В одном из примеров способа минеральный материал, раздробленный до размера естественных гранул, подвергают насыщению в течение 20 мин 1% раствором KMnO4, в процессе насыщения образовывался MnO2, который насыщает поры минерального сорбента, и осуществляют термическую доводку сорбента при температуре 200-210°C.

К недостаткам данного способа получения диоксида марганца на поверхности природного пористого гранулированного материала можно отнести такую технологическую операцию, как термообработка при высоких температурах для получения на поверхности стабильного соединения диоксида марганца, являющегося катализатором окисления железа и марганца.

В качестве прототипа выбран фильтрующий материал для очистки воды от марганца и железа (патент RU №2275335, опубл. 27.04.2006).

В этом фильтрующем материале в качестве носителя используется зернистый материал природного происхождения - горелая порода, а на поверхности горелой породы образован каталитически активный слой, состоящий из смеси оксидов MnO, Mn2O3 и MnO2. Данный зернистый материал хорошо работает при pH 7,8-9,0.

К недостаткам данного модифицированного фильтрующего материала можно отнести следующее: модифицированная горелая порода хорошо удаляет из воды железо при pH 6,3-6,5. Однако при этих значениях pH происходит растворение оксидов марганца, что приводит к увеличению содержания в воде ионов марганца выше ПДК.

Задачей предлагаемого изобретения является разработка нового каталитического сорбента на основе природных материалов, обладающего высокими очистными свойствами в отношении ионов железа и марганца.

Техническим результатом заявляемого изобретения является создание эффективного каталитического сорбента, очищающего воду от железа и марганца, имеющего каталитически активный слой на внешней и внутренней (пористой) поверхности материала.

Поставленная задача достигается тем, что каталитический сорбент для очистки воды от соединений железа и марганца включает в свой состав минеральные носители и каталитическую добавку в виде диоксида марганца. Материал отличается тем, что в качестве носителей он содержит природный цеолит клиноптилолитового ряда, обладающий развитой пористой структурой, вулканическую пемзу, имеющую макропоры, и минерал манганит, обладающий каталитическими свойствами. На внутренней и внешней поверхностях носителей образован каталитический слой в виде диоксида марганца.

Выбор природного цеолита клиноптилолитового ряда, имеющего развитую систему пор, вулканической пемзы имеющей макропоры и минерала манганита, обладающего каталитическими свойствами, обусловлен оптимальным сочетанием их технико-эксплуатационных характеристик (развитая пористая структура, механическая прочность, сорбционные и каталитические свойства). А оптимальная пропорция носителей с модификацией их диоксидом марганца обеспечивает повышенные характеристики при извлечении из воды соединений железа и марганца. Данная композиция способна более эффективно окислять двухвалентное железо до нерастворимого Fe3+, а также двухвалентный марганец до нерастворимых соединений Mn4+и Mn3+, которые будут удерживаться слоем каталитического сорбента. Продукты окисления загрязнений в воде, находящиеся на слое сорбционной загрузки в нерастворимой форме, можно удалять с фильтра посредством обратной промывки слоя каталитического сорбента.

Повышенная сорбционно-каталитическая способность заявляемого материала по железу и марганцу достигается благодаря равномерному и оптимальному распределению каталитического агента диоксида марганца по внешней и внутренней (в порах) поверхности. Это обеспечивает более полное участие диоксида марганца в процессах окисления и сорбции продуктов окисления Fe2+и Mn2+, тем самым идет повышение сорбционно-каталитических свойств разработанного каталитического сорбента. Заявляемый каталитический сорбент для очистки воды от соединений железа и марганца получали следующим образом.

В стеклянный стакан объемом 1000 см3 помещали минеральные носители в виде природного цеолита (размер гранул 1-2 мм) в количестве 135 граммов и вулканической пемзы (размер гранул 1-2 мм) массой 45 граммов. Заливали к находящимся в стакане носителям раствор хлорида марганца концентрацией 7%, в количестве 300 см3 и выдерживали в течение 2 часов. Далее избыток хлорида марганца сливали из стакана и заливали в него раствор перманганата калия с концентрацией 1% в количестве 300 см3. Выдерживали в течение 3 часов и сливали раствор перманганата марганца с дальнейшей промывкой загрузки водой, от остатков диоксида марганца и перманганата калия, которые не закреплены на носителях. Далее проводилась сушка данных носителей при температуре 200°C в течение 4 часов. После процесса сушки к модифицированным образцам природного цеолита и вулканической пемзы добавили 45 граммов минерала манганита (размер частиц 1-2 мм) и тщательно перемешали.

Полученный каталитический сорбент исследовали на извлечение с его помощью ионов железа и марганца из модельного раствора. Для этого разработанный материал (размер частиц 1-2 мм) загружали в колонку с площадью сечения 10 см2 и высотой 0,8 м (высота слоя загрузки) и пропускали модельный раствор сверху вниз, со скоростью 10 м/ч. Модельный раствор готовился на водопроводной воде с использованием железа (II) сернокислого 7-водного (ХЧ) и марганца (II) сернокислого 5-водного (ЧДА). Концентрации модельного раствора составляли по железу 13,3 мг/дм3 и по марганцу 0,5 мг/дм3. Исходный модельный раствор и фильтрат анализировали на содержание железа и марганца с использованием фотоколориметрии. Результаты исследований физико-химических характеристик заявляемого каталитического сорбента по сравнению с материалом-прототипом представлены в таблице 1. Из таблицы 1 видно, что у заявляемого каталитического сорбента величина удельной поверхности и удельный объем пор значительно выше, чем у материала-прототипа. Результаты испытаний заявляемого каталитического сорбента на основе модифицированных минеральных носителей и материала-прототипа при очистке модельного раствора, содержащего ионы железа и марганца, показаны в таблице 2. Из таблицы 2 видно, что заявляемый каталитический сорбент имеет значительно лучшие свойства при извлечении из водного раствора ионов железа и марганца по сравнению с материалом-прототипом, что позволяет увеличить продолжительность цикла и качество очистки воды.

Похожие патенты RU2617492C1

название год авторы номер документа
СОРБЦИОННО-ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Иванов А.А.
  • Палажченко А.Ю.
  • Спевак М.А.
RU2229336C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ 2014
  • Губайдулина Татьяна Анатольевна
  • Губайдулин Вахит Николаевич
  • Маркин Андрей Андреевич
  • Матвеев Андрей Петрович
RU2574754C1
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ДЛЯ УДАЛЕНИЯ ИОНОВ МАРГАНЦА ИЗ ВОДЫ 1995
  • Поляков Валерий Емельянович[Ua]
  • Остапенко Владимир Трофимович[Ua]
  • Полякова Ирина Григорьевна[Ua]
  • Тарасевич Юрий Иванович[Ua]
  • Шовгай Александр Степанович[Ua]
  • Кулишенко Алексей Ефимович[Ua]
RU2091158C1
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД 2017
  • Секисов Артур Геннадьевич
  • Сигачев Николай Петрович
  • Горбань Дарья Николаевна
  • Лавров Александр Юрьевич
RU2658419C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ ОТ ЖЕЛЕЗА, МАРГАНЦА И СЕРОВОДОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Губайдулина Татьяна Анатольевна
  • Каминская Ольга Викторовна
  • Апкарьян Афанасий Саакович
RU2447922C1
Фильтрующий материал для очистки воды от радионуклидов и способ его получения 2021
  • Иванов Вадим Владимирович
RU2777359C1
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ДЛЯ ОЧИСТКИ ВОДЫ 2003
  • Беренгартен М.Г.
  • Хамизов Р.Х.
  • Кручинин Ю.А.
RU2238788C1
ФИЛЬТРУЮЩИЙ ПАТРОН ДЛЯ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ ИЗ ИСТОЧНИКА С НИЗКИМ СОДЕРЖАНИЕМ ИОНОВ КАЛЬЦИЯ, МАГНИЯ И ФТОРА И ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ИОНОВ ЖЕЛЕЗА 2013
  • Захаров Сергей Викторович
  • Маслюков Александр Петрович
  • Мельников Игорь Олегович
  • Николотов Владимир Викторович
  • Новиков Антон Валерьевич
  • Подобедов Роман Евгеньевич
  • Растегаев Алексей Григорьевич
  • Сапрыкин Виктор Васильевич
  • Якубаускас Анна Николаевна
RU2533715C1
СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Мартемьянов Дмитрий Владимирович
  • Галанов Андрей Иванович
  • Журавков Сергей Петрович
  • Мухортов Денис Николаевич
  • Хаскельберг Михаил Борисович
  • Юрмазова Татьяна Александровна
  • Яворовский Николай Александрович
RU2592525C2
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ ОТ МАРГАНЦА И ЖЕЛЕЗА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ВОДЫ ОТ МАРГАНЦА И ЖЕЛЕЗА 2004
  • Губайдулина Татьяна Анатольевна
  • Почуев Николай Александрович
RU2275335C2

Реферат патента 2017 года КАТАЛИТИЧЕСКИЙ СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД

Изобретение относится к очистке природных и сточных вод и может быть использовано на водозаборах, промышленных предприятиях и в индивидуальных системах очистки питьевой воды. Предложен состав сорбента, который содержит носители в виде природного цеолита клиноптилолитового ряда, вулканической пемзы и минерала манганита с содержанием марганца не менее 50%. В качестве активного каталитического компонента сорбент содержит диоксид марганца на упомянутых носителях. Изобретение обеспечивает повышение степени очистки воды от ионов железа и марганца. 1 табл.

Формула изобретения RU 2 617 492 C1

Каталитический сорбент для очистки воды от соединений железа и марганца, содержащий носители в виде природного цеолита клиноптилолитового ряда, вулканической пемзы и минерала манганита (бурая марганцевая руда) MnO(OH), имеющего содержание марганца не менее 50%, и диоксид марганца в качестве активного компонента, при этом сорбент характеризуется следующим соотношением компонентов, мас. %:

природный цеолит 57,5 вулканическая пемза 20 минерал манганит 20 диоксид марганца 2,5

Документы, цитированные в отчете о поиске Патент 2017 года RU2617492C1

ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ ОТ МАРГАНЦА И ЖЕЛЕЗА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ВОДЫ ОТ МАРГАНЦА И ЖЕЛЕЗА 2004
  • Губайдулина Татьяна Анатольевна
  • Почуев Николай Александрович
RU2275335C2
СОРБЦИОННО-ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Иванов А.А.
  • Палажченко А.Ю.
  • Спевак М.А.
RU2229336C1
RU 95100932 А1, 27.04.2006
Приспособление для автоматического сохранения постоянства величины зазора в распределительном клапанном механизме двигателей внутреннею горения 1931
  • Дорофеев В.М.
SU23026A1
Способ получения композиционного сорбента 1987
  • Челищев Николай Федорович
  • Марьина Наталия Андреевна
  • Грибанова Наталия Константиновна
SU1491560A1
US 6921732 B2, 26.07.2005.

RU 2 617 492 C1

Авторы

Мартемьянова Ирина Владимировна

Плотников Евгений Владимирович

Мартемьянов Дмитрий Владимирович

Даты

2017-04-25Публикация

2016-04-21Подача