Система управления работоспособностью автоматизированных технологических объектов газотранспортных систем Российский патент 2017 года по МПК G05B19/00 G06F19/00 

Описание патента на изобретение RU2619399C1

Изобретение относится к системам управления работоспособностью автоматизированных технологических объектов газотранспортных систем и может быть использовано на объектах газотранспортных предприятий.

Известна автоматизированная информационная система для непрерывного измерения и анализа в реальном масштабе времени коэффициента полезного действия насосов в насосно-трубопроводном комплексе магистрального нефтепровода (см. патент РФ на изобретение №2320007, опубл. 20.03.2008). Указанная система содержит насосы на насосных станциях, магистральные трубопроводы, датчики давления на входе и выходе каждого насоса, электрические счетчики активной энергии у каждого синхронного электродвигателя приводов насосов, микропроцессорный контроллер и систему телемеханики для передачи данных от насосных станций на диспетчерский пункт в электронно-вычислительную машину (далее - ЭВМ). Измерительные импульсные выходы электрических счетчиков активной энергии каждого синхронного электродвигателя привода насоса подаются на микропроцессорный контроллер для обработки с целью получения времени между двумя измерительными импульсами, идущими от счетчика активной энергии работающего в данный момент насоса, и его номера в двоичном коде, выход с которого вместе с выходами от датчиков давления на входе и выходе насоса подают в двоичном коде по системе телемеханики на диспетчерский пункт системы нефтепровода в ЭВМ с базой данных по фактическим рабочим и расходным характеристикам насосов, которая вычисляет по каждому насосу активную мощность, давление, расходный коэффициент, объемный расход жидкости, по среднему значению анализирует суточные полученные данные с целью выявления непрерывного стационарного режима работы насоса по расходу при колебании расхода в пределах трех процентов от среднего значения и по ним вычисляет средние базовое и текущее значения коэффициента полезного действия насосов. Полученные текущие данные поступают для хранения в память ЭВМ, по указанным данным ведется непрерывный анализ состояния насосно-трубопроводного комплекса. При этом данные сравнивают с предыдущими значениями, находящимися в памяти ЭВМ, и если значения у какого-либо насоса, работающего в номинальном режиме, меньше базовых, принимается решение о переключении работающего насоса на другой насос с дельнейшим его осмотром и ремонтом.

Данное техническое решение позволяет измерять и анализировать в реальном масштабе времени текущий коэффициент полезного действия каждого насоса, обеспечивает своевременное обнаружение возможных отклонений от заданного режима работы насосов и позволяет исключить их неэффективную работу и возможные аварийные отклонения.

Тем не менее, применение известного технического решения ограничено областью насосно-трубопроводных комплексов и, как следствие, не может быть использовано для комплексной оценки текущего состояния и прогнозирования отказов оборудования технологических объектов газотранспортных предприятий.

Известна также и автоматизированная система для информационного обеспечения и управления нефтедобычей в реальном масштабе времени (см. патент РФ на изобретение №2541937, опубл. 10.06.2014). Указанная система содержит n исполнительных механизмов, n устройств обработки и преобразования информации, соответствующих каждому исполнительному механизму, автономное устройство управления, устройство визуализации данных, мобильное устройство связи и автономное устройство сбора и хранения данных.

Данная система позволяет обеспечить непрерывный мониторинг с получением достоверной информации в любой заданный момент времени с возможностью своевременного обнаружения отклонений от заданных режимов работы любого из n подключенных к указанной системе исполнительных механизмов, а также с возможностью выбора оптимальных режимов работы исполнительных механизмов как в месте расположения данных механизмов и устройств обработки и преобразования информации, так и в любой географической точке, где может быть обеспечена мобильная связь на устройствах, которые могут быть подключены как устройства связи, устройства визуализации данных, с возможностью управления работой исполнительных механизмов.

Однако данная система обрабатывает данные в реальном масштабе времени и не предусматривает обработку исторических данных, что, в свою очередь, не позволяет провести комплексный анализ с целью выявления ненадежных технологических объектов и, как следствие, не позволяет принять превентивных мер по повышению показателей надежности и безотказного функционирования объекта.

Задачей заявленного изобретения является устранение недостатков известных заявителю аналогов за счет создания системы управления работоспособностью технологических объектов, адаптированной для применения на объектах газотранспортных предприятий, которая позволила бы осуществлять функции контроля целостности получаемых данных, анализа их достоверности, определения состояния и автоматического выявления сбоев в работе оборудования технологических объектов, а также оптимизировать затраты на техническое обслуживание и ремонт указанных технологических объектов.

Технический результат, достигаемый при применении заявленной системы управления работоспособностью технологических объектов газотранспортных предприятий, заключается в повышении надежности и безопасности эксплуатации технологических объектов газотранспортных предприятий.

Для решения поставленной задачи и достижения указанного технического результата предложена система управления работоспособностью технологических объектов газотранспортных предприятий, содержащая:

- устройство обработки данных, выполненное с возможностью получения и обработки данных реального времени и/или исторических данных о технологическом объекте с целью выявления нештатных событий и включающее в себя модуль обработки исторических данных, модуль обработки данных реального времени и модуль прогнозирования отказов оборудования технологического объекта,

- устройство ввода-вывода данных, выполненное с возможностью передачи данных о выявленных нештатных событиях оператору технологического объекта,

- устройство хранения данных, выполненное с возможностью приема от оператора технологического объекта данных о выявленных оператором технологического объекта нештатных событиях и о его действиях, направленных на предотвращение указанных нештатных событий, и их хранения,

причем модуль обработки исторических данных выполнен с возможностью

- выявления фактических остановов газоперекачивающих агрегатов, входящих в состав технологического объекта,

- выявления параметров телеизмерений, значения которых превышают критериальные значения,

- выявления исчезновений связи с технологическим объектом,

- выявления дискретных параметров, значения которых превышают критериальные значения,

- выявления параметров, вышедших за пределы достоверности,

- выявления параметров, вышедших за пределы динамических уставок,

- выявления зависших параметров,

- выявления ошибок в показаниях состояния кранов, входящих в состав технологического объекта,

причем модуль обработки данных реального времени выполнен с возможностью:

- осуществления проверки текущего состояния оборудования технологического объекта в случае получения данных о произошедшем нештатном событии,

- формирования данных о произошедшем нештатном событии в устройстве хранения данных в случае, если текущее состояние оборудования технологического объекта в работе,

при этом модуль прогнозирования отказов оборудования технологического объекта выполнен с возможностью

- оценки распределения измеряемых параметров технологического объекта за весь период его работы,

- расчета для каждого из указанных измеряемых параметров классических статистических значений, среди которых, по меньшей мере, математическое ожидание, дисперсия, минимальное и максимальное наблюдаемые значения,

- разделения измеряемых параметров на технологические группы,

- построения уточненной модели поведения каждого из указанных параметров в зависимости от набора рабочих характеристик оборудования.

Поставленная задача и указанный технический результат соответственно решаются и достигаются тем, что упомянутое устройство хранения данных выбирают из группы, включающей в себя, по меньшей мере, жесткий диск, массив хранения данных, внешний носитель.

Поставленная задача и указанный технический результат соответственно решаются и достигаются тем, что упомянутое устройство ввода-вывода выбирают из группы, включающей в себя, по меньшей мере, ЖК-монитор, светодиодный дисплей, сенсорную панель.

Система управления работоспособностью технологических объектов газотранспортных предприятий иллюстрируется описанием предпочтительного варианта ее осуществления и графическими материалами, где на фиг. 1 изображена блок-схема реализации указанной системы, а на фиг. 2 - структурная схема устройства обработки данных, входящего в состав указанной системы.

Далее со ссылкой на прилагаемые графические материалы описана система управления работоспособностью технологических объектов газотранспортных предприятий, реализованная в соответствии с предпочтительным вариантом осуществления изобретения.

Система управления работоспособностью технологических объектов газотранспортных предприятий включает в себя устройство обработки данных, устройство хранения данных и устройство ввода-вывода данных.

В качестве устройства обработки данных возможно использование сервера, автоматизированного рабочего места, программно-логического контроллера.

Устройство обработки данных подключается непосредственно к автоматизированной системе управления технологическим процессом по стандартным протоколам передачи данных (ОРС, Modbus). Получая данные реального времени и/или исторические данные о технологическом объекте, устройство обработки данных осуществляет анализ текущего состояния оборудования технологического объекта и выявляет нештатные события, произошедшие за исследуемый период.

Все выявленные нештатные события в работе оборудования технологического объекта фиксируются и сохраняются в устройстве хранения данных.

В качестве устройства хранения данных возможно использование жестких дисков, массивов хранения данных, внешних носителей.

Посредством устройства ввода-вывода данных, в качестве которого возможно использование ЖК-монитора, светодиодного дисплея, сенсорной панели, данные доводятся до оператора технологического объекта, отвечающего за эксплуатацию оборудования технологического объекта.

На основании указанных данных оператор технологического объекта производит необходимые действия над технологическим объектом для устранения нештатных событий или для предотвращения спрогнозированных отказов. В свою очередь, оператор технологического объекта через устройство ввода-вывода данных вносит в устройство хранения данных данные о выполненных на технологическом объекте действиях. Оператор технологического объекта через устройство ввода-вывода данных также может осуществлять занесение данных о нештатном событии вручную, при его обнаружении при визуальном осмотре или из других источников данных.

Накопленные в устройстве хранения данных данные о нештатных событиях и действиях, направленных на их устранение, используются для повышения эффективности работ, связанных с эксплуатацией оборудования технологического объекта, планирования технического обслуживания и ремонта, передачи данных в сторонние системы и устройства для последующей обработки.

В устройство обработки данных данные поступают из автоматизированной системы управления технологическим процессом. Указанные данные обрабатываются одним из трех входящих в состав устройства обработки данных функциональных модулей:

- модулем обработки исторических данных,

- модулем обработки данных реального времени,

- модулем прогнозирования отказов оборудования.

Модуль обработки исторических данных включает в себя следующие алгоритмы выявления нештатных событий:

- алгоритм выявления фактических остановов газоперекачивающих агрегатов, входящих в состав технологического объекта;

- алгоритм выявления параметров телеизмерений, значения которых превышают критериальные значения;

- алгоритм выявления исчезновений связи с технологическим объектом;

- алгоритм выявления дискретных параметров, значения которых превышают критериальные значения;

- алгоритм выявления параметров, вышедших за пределы достоверности;

- алгоритм выявления параметров, вышедших за пределы динамических уставок;

- алгоритм выявления зависших параметров;

- алгоритм выявления ошибок в показаниях состояния кранов, входящих в состав технологического объекта.

Алгоритм выявления фактических остановов газоперекачивающих агрегатов, входящих в состав технологического объекта, предполагает анализ исчезновения сигнала «Работа», приходящего с газоперекачивающего агрегата, одновременно с анализом сопутствующего изменения параметров контроля (в частности, давления).

Для каждого газоперекачивающего агрегата последовательно осуществляется:

- определение за рассматриваемый период всех переходов газоперекачивающего агрегата из режима «работа» в любой другой режим и соответствующих временных интервалов его пребывания в данных режимах,

- определение на каждом интервале Δt=tкон-tнач средневзвешенных по времени значений контролируемых параметров с использованием соотношения

,

где Π - контролируемый параметр,

- определение достоверности останова газоперекачивающего агрегата по критерию снижения значений Пср хотя бы одного из контролируемых параметров в заданное число раз,

- селекция фактических переходов в соответствии с установленным фильтром (в частности, «только аварийные остановы» или «все остановы»).

Алгоритм выявления параметров телеизмерений, значения которых превышают критериальные значения, для каждого исследуемого параметра предполагает последовательное решение следующих задач:

- определение в заданном интервале «текущее время минус заданный период» изменения значений параметра dX и изменения временных значений dT для каждой пары зарегистрированных значений параметра,

- определение их средних значений dXcp и dTcp на рассматриваемом интервале и сравнение указанных средних значений с критериальными dXcrit и dTcrit,

- формирование списка параметров, для которых одновременно dXcp>dXcrit и dTcp<dTcrit.

Алгоритм выявления исчезновений связи с технологическим объектом для каждого параметра, контролирующего состояние связи, предполагает последовательное решение следующих задач:

- считывание телеметрических данных за заданный период с последующим исключением из них недостоверных значений,

- определение перерывов связи, превышающих заданный критерий,

- формирование формализованных сообщений о перерывах связи.

Алгоритм выявления дискретных параметров, значения которых превышают критериальные значения, для каждого исследуемого параметра предполагает последовательное решение следующих задач:

- подсчет количества изменений состояний параметра dN во временном интервале «текущее время минус заданный период»,

- сравнение dN с заданным критериальным значением dNcrit,

- формирование формализованных сообщений о параметрах, для которых dN>dNcrit.

Алгоритм выявления параметров, вышедших за пределы достоверности, предполагает выявление параметров, текущие значения которых выходят за заданный интервал достоверности [Xmin, Xmax]. Для каждого исследуемого параметра последовательно решаются следующие задачи:

- определение текущего значения X,

- сравнение X с заданными критериями Xmin и Xmax,

- формирование формализованных сообщений о параметрах, для которых X<Xmin или Х>Xmax.

Алгоритм выявления параметров, вышедших за пределы динамических уставок, предполагает для каждого исследуемого параметра последовательное решение следующих задач:

- во временном интервале «текущее время минус заданный период» определение максимального изменения параметра ΔΧ между двумя рядом стоящими точками прихода его значений,

- сравнение ΔΧ с заданным критерием ΔΧcrit,

- формирование формализованных сообщений о параметрах, для которых ΔΧ>ΔΧcrit.

Алгоритм выявления зависших параметров предполагает выявление параметров телеизмерений, время «простоя» которых превышает заданный критерий Τcrit. В качестве критерия «зависания» используется фактор неизменяемости значения параметра по заданному числу знаков после запятой Z. Для каждого исследуемого параметра последовательно решаются следующие задачи:

- определение текущего значения X,

- поиск ближайшего предыдущего значения Xprior, отличного от текущего значения по заданному критерию Z,

- сравнение момента Tprior с Tcrit,

- формирование формализованных сообщений о параметрах, у которых Tprior>Tcrit.

Алгоритм выявления ошибок в показаниях состояния кранов предполагает выявление кранов на линейных участках магистральных газопроводов, на которых зарегистрированное состояние «открыт» не подтверждается сопутствующими изменениями значений давлений до крана и после.

Для каждого крана последовательно решаются следующие задачи:

- определение текущего состояния крана («открыт», «закрыт»),

- для кранов в состоянии «открыт» на заданном интервале Δt=tкон-tнач определяются средние значения параметров давления до и после крана с использованием соотношения

,

где П - параметр давления,

- определение достоверности состояния «открыт» по заданному критерию одинаковости значений давлений до и после крана,

- формирование данных о неподтвержденном состоянии крана «открыт».

Модуль обработки данных реального времени предназначен для обработки данных реального времени, поступающих непосредственно с локальных автоматизированных устройств. Поступившие данные содержат информацию о нештатных событиях, формируемых непосредственно автоматизированной системой управления технологическим процессом.

При получении сигнала о произошедшем нештатном событии проводится проверка текущего состояния оборудования (в частности, работа, ремонт, переходные процессы, например такие, как пуск агрегата). Если оборудование в работе, то в устройстве хранения данных формируются соответствующие данные о произошедшем нештатном событии. В противном случае, фиксация нештатного события не производится.

В модуле прогнозирования отказов оборудования используются методы статистического анализа для оценки состояния оборудования и прогнозирования отказов, в частности, проверка соответствия значения контролируемого объекта модели. При этом в качестве модели может выступать как просто допустимый интервал конкретного измеряемого параметра, так и сложная многомерная зависимость, полученная различными способами:

- заданная производителем;

- полученная физико-математическими методами;

- построенная по фактически имеющимся наблюдениям в широком диапазоне рабочих условий.

Для каждого из параметров обследуется его статистическое распределение за определенный интервал времени. В случае наличия возможности и необходимости уточнения границ нормального поведения для конкретных условий производится оценка корреляции с другими параметрами и с использованием методов регрессионного анализа формируется математическая модель зависимости исследуемого параметра от других параметров. Также возможна организация сложной модели жизненного цикла технологического объекта, результатом которой является определенный параметр, значение которого сравнивается с фактически измеренным, а результатом сравнения является выявление наличия отклонения одного или нескольких используемых в модели параметров.

Результатом оценки является получение уточненных значений максимально возможного количества параметров для любого режима работы оборудования и построение комплексных моделей, позволяющих выявить отклонение от нормы в работе технологических объектов.

Первым этапом анализа в модуле прогнозирования отказов оборудования является общая оценка распределения измеряемых значений за весь период работы.

Затем для каждого из параметров рассчитываются классические статистические значения, в частности, математическое ожидание, дисперсия, минимальное и максимальное наблюдаемое значение. Результатом анализа является оценка стабильности значений в наблюдаемом интервале и реальный разброс значений, в общем смысле выраженный характеристикой «стандартное отклонение».

Следующим этапом анализа в модуле прогнозирования отказов оборудования является разделение измеряемых параметров на технологические группы для концентрации внимания на наборе данных по определенной смысловой нагрузке. Каждая технологическая группа рассматривается в совокупности с технологической схемой и схемой автоматизации, что позволяет оценить влияние одного параметра на другой с точки зрения физики протекающих процессов.

Для параметров, где диапазон полученных значений достаточно широк, производится оценка возможности получения уточненного диапазона значений путем построения либо простых зависимостей от другого параметра, либо модели зависимости от группы других параметров.

Для малого количества параметров достаточной является оценка физического взаимодействия.

Финальным этапом анализа в модуле прогнозирования отказов оборудования является построение уточненной модели поведения параметра в зависимости от выбранного набора рабочих характеристик оборудования. Построение корреляционной матрицы позволяет выявить факторы, влияющие на поведение исследуемого параметра, при этом в матрицу включают параметры из других групп функционирования системы, которые предположительно могут влиять на значение параметра.

Для выявления причин возникновения остановов, понимания типовых факторов, характерных для всех остановов, а также в качестве предварительного этапа построения прогнозных моделей используется анализ факторов.

В динамике значений сигналов с датчиков контрольно-измерительной аппаратуры выделяются специальные события, в частности, всплески, скачки, нестабильность. В результате показатели с датчиков трансформируются в список «отклонений» в работе указанных датчиков. Система на основе методов математической статистики сама распознает, какие изменения в работе датчиков являются значимыми, а какие нет. На данном этапе используются различные методы автоматизированного контроля качества процессов.

Реализация системы управления работоспособностью технологических объектов на объектах газотранспортных предприятий позволяет существенно повысить надежность и безопасность эксплуатации технологических объектов газотранспортных предприятий.

Необходимо понимать, что приведенный выше для примера вариант осуществления изобретения не является ограничивающим объем изобретения, и после ознакомления с настоящим описанием специалисты в данной области техники могут предложить множество изменений и дополнений к описанному варианту осуществления, все из которых попадают в объем правовой охраны изобретения, определяемый совокупностью признаков формулы изобретения.

Похожие патенты RU2619399C1

название год авторы номер документа
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ГАЗОПЕРЕКАЧИВАЮЩИМ АГРЕГАТОМ "КВАНТ-Р" 2017
  • Наумец Анатолий Евгеньевич
RU2660216C1
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ УПРАВЛЯЮЩАЯ СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕМПЕРАТУРНЫМИ ПАРАМЕТРАМИ ОБЪЕКТОВ ГАЗОВОГО ПРОМЫСЛА 2022
  • Мельниченко Андрей Викторович
  • Павлюковская Ольга Юрьевна
  • Васильев Вячеслав Георгиевич
  • Авязов Дмитрий Захарович
  • Екотов Андрей Геннадиевич
  • Рылов Николай Евгеньевич
  • Афанасьев Максим Сергеевич
  • Родованов Виталий Евгеньевич
  • Свиридов Анатолий Георгиевич
  • Андреев Александр Александрович
  • Агапов Павел Афанасьевич
  • Иванова Ольга Анатольевна
RU2801843C1
СИСТЕМА И СПОСОБ ИНТЕРАКТИВНОГО ОБУЧЕНИЯ 2009
  • Маркелов Виталий Анатольевич
  • Михаленко Вячеслав Александрович
  • Титов Анатолий Иванович
  • Маслов Алексей Станиславович
  • Леонтьева Елена Геннадьевна
  • Потапов Леонид Сергеевич
  • Шарыгин Дмитрий Евгеньевич
  • Завьялов Алексей Дмитриевич
RU2420811C2
Способ диагностики и мониторинга аномалий в кибер-физической системе 2021
  • Лаврентьев Андрей Борисович
  • Шкулев Вячеслав Игоревич
  • Травов Александр Викторович
  • Воронцов Артем Михайлович
  • Нечипорук Артем Михайлович
  • Мамаев Максим Александрович
  • Иванов Дмитрий Александрович
  • Демидов Николай Николаевич
RU2784981C1
Способ комплексного анализа параметров машины непрерывного литья заготовок 2023
  • Чиглинцев Алексей Викторович
  • Морозов Ярослав Павлович
  • Анохин Александр Николаевич
  • Прохоров Андрей Павлович
RU2825196C1
СИСТЕМА СПУТНИКОВОГО МОНИТОРИНГА СМЕЩЕНИЙ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ СПУТНИКОВЫХ НАВИГАЦИОННЫХ СИСТЕМ ГЛОНАСС/GPS 2011
  • Багаутдинова Елена Рашитовна
  • Еникеев Эрнст Камильевич
  • Кошманов Владимир Федорович
  • Ревяков Геннадий Алексеевич
  • Чистяков Вячеслав Юрьевич
RU2467298C1
АВТОМАТИЗИРОВАННАЯ СИСТЕМА ВЫЯВЛЕНИЯ И ПРОГНОЗИРОВАНИЯ ОСЛОЖНЕНИЙ В ПРОЦЕССЕ СТРОИТЕЛЬСТВА НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН 2020
  • Дмитриевский Анатолий Николаевич
  • Еремин Николай Александрович
  • Черников Александр Дмитриевич
  • Чащина-Семенова Ольга Кимовна
  • Фицнер Леонид Константинович
RU2745136C1
Индивидуальный диспетчерский тренажер для тренинга оперативно-диспетчерского персонала магистральных нефтепроводов 2015
  • Трусов Вадим Александрович
  • Горинов Михаил Александрович
  • Хазеев Булат Шамильевич
  • Калитин Андрей Сергеевич
  • Ляпин Александр Юрьевич
  • Сарданашвили Сергей Александрович
  • Швечков Виталий Александрович
  • Южанин Виктор Владимирович
  • Халиуллин Айрат Радикович
  • Голубятников Евгений Александрович
  • Бальченко Антон Сергевич
  • Попов Руслан Владимирович
  • Бедердинов Григорий Олегович
RU2639932C2
СПОСОБ И СИСТЕМА ПЛАНИРОВАНИЯ ПРОФИЛАКТИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ НА ОСНОВЕ АКУСТИЧЕСКОЙ ДИАГНОСТИКИ С ПРИМЕНЕНИЕМ НЕЙРОННЫХ СЕТЕЙ 2021
  • Власов Александр Владимирович
  • Киселев Александр Владимирович
  • Михайлов Дмитрий Михайлович
RU2764962C1
СИСТЕМА ВИБРАЦИОННОГО КОНТРОЛЯ, ЗАЩИТЫ И ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ 2011
  • Брусиловский Юрий Валерьевич
RU2464486C1

Иллюстрации к изобретению RU 2 619 399 C1

Реферат патента 2017 года Система управления работоспособностью автоматизированных технологических объектов газотранспортных систем

Изобретение относится к системам управления работоспособностью автоматизированных технологических объектов газотранспортных систем и может быть использовано на объектах газотранспортных предприятий. Система содержит устройство обработки данных, устройство хранения данных и устройство ввода-вывода данных. Устройство обработки данных выполнено с возможностью получения и обработки данных реального времени и/или исторических данных о технологическом объекте с целью выявления нештатных событий и включает в себя модуль обработки исторических данных, модуль обработки данных реального времени и модуль прогнозирования отказов оборудования технологического объекта. Устройство ввода-вывода данных выполнено с возможностью передачи данных о выявленных нештатных событиях оператору технологического объекта. Устройство хранения данных выполнено с возможностью приема от оператора технологического объекта данных о выявленных оператором технологического объекта нештатных событиях и о его действиях, направленных на предотвращение указанных нештатных событий, и их хранения. Технический результат - повышение надежности и безопасности эксплуатации технологических объектов газотранспортных предприятий. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 619 399 C1

1. Система управления работоспособностью технологических объектов газотранспортных предприятий, содержащая:

- устройство обработки данных, выполненное с возможностью получения и обработки данных реального времени и/или исторических данных о технологическом объекте с целью выявления нештатных событий и включающее в себя модуль обработки исторических данных, модуль обработки данных реального времени и модуль прогнозирования отказов оборудования технологического объекта,

- устройство ввода-вывода данных, выполненное с возможностью передачи данных о выявленных нештатных событиях оператору технологического объекта,

- устройство хранения данных, выполненное с возможностью приема от оператора технологического объекта данных о выявленных оператором технологического объекта нештатных событиях и о его действиях, направленных на предотвращение указанных нештатных событий, и их хранения,

причем модуль обработки исторических данных выполнен с возможностью

- выявления фактических остановов газоперекачивающих агрегатов, входящих в состав технологического объекта,

- выявления параметров телеизмерений, значения которых превышают критериальные значения,

- выявления исчезновений связи с технологическим объектом,

- выявления дискретных параметров, значения которых превышают критериальные значения,

- выявления параметров, вышедших за пределы достоверности,

- выявления параметров, вышедших за пределы динамических уставок,

- выявления зависших параметров,

- выявления ошибок в показаниях состояния кранов, входящих в состав технологического объекта,

причем модуль обработки данных реального времени выполнен с возможностью

- осуществления проверки текущего состояния оборудования технологического объекта в случае получения данных о произошедшем нештатном событии,

- формирования данных о произошедшем нештатном событии в устройстве хранения данных в случае, если текущее состояние оборудования технологического объекта - в работе,

при этом модуль прогнозирования отказов оборудования технологического объекта выполнен с возможностью

- оценки распределения измеряемых параметров технологического объекта за весь период его работы,

- расчета для каждого из указанных измеряемых параметров классических статистических значений, среди которых, по меньшей мере, математическое ожидание, дисперсия, минимальное и максимальное наблюдаемые значения,

- разделения измеряемых параметров на технологические группы,

- построения уточненной модели поведения каждого из указанных параметров в зависимости от набора рабочих характеристик оборудования.

2. Система по п. 1, отличающаяся тем, что упомянутое устройство хранения данных выбирают из группы, включающей в себя, по меньшей мере, жесткий диск, массив хранения данных, внешний носитель.

3. Система по п. 1, отличающаяся тем, что упомянутое устройство ввода-вывода выбирают из группы, включающей в себя, по меньшей мере, ЖК-монитор, светодиодный дисплей, сенсорную панель.

Документы, цитированные в отчете о поиске Патент 2017 года RU2619399C1

СПОСОБ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ И УПРАВЛЕНИЯ НЕФТЕДОБЫЧЕЙ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ И АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Богачук Юрий Федорович
  • Бучельников Николай Васильевич
RU2541937C2
Игрушка-динамометр 1958
  • Попов Б.В.
SU116252A1
ТЕЛЕМЕХАНИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ И УПРАВЛЕНИЯ УСТАНОВКАМИ КАТОДНОЙ ЗАЩИТЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ 2013
  • Крючков Николай Михайлович
  • Баранов Борис Александрович
  • Владимиров Виктор Алексеевич
  • Фридман Иосиф Соломонович
RU2540847C2
Устройство для раздавливания чайного листа 1941
  • Коршунов И.Т.
SU64685A1

RU 2 619 399 C1

Авторы

Карнаухов Михаил Юрьевич

Руденко Александр Михайлович

Горбань Александр Викторович

Политай Игорь Анатольевич

Жоров Сергей Викторович

Даты

2017-05-15Публикация

2015-12-25Подача