Порфиразин, порфиразиновый комплекс гадолиния и их применение Российский патент 2017 года по МПК C07D487/22 C07F5/00 

Описание патента на изобретение RU2621710C1

Предлагаемая группа изобретений относится к области биомедицины, к разработке мультимодальных противораковых препаратов, касается порфиразина, порфиразинового комплекса гадолиния и их применения для фотодинамической терапии (ФДТ) злокачественных новообразований в качестве фотосенсибилизаторов и одновременно в качестве оптических сенсоров внутриклеточной вязкости.

Измерение внутриклеточной вязкости в ходе фотодинамического воздействия на раковые клетки позволяет проводить мониторинг процедуры фотодинамической терапии (ФДТ) в режиме реального времени.

Многие из тетрапиррольных красителей нашли широкое применение в биомедицине, поскольку они часто обладают яркой флуоресценцией и способны избирательно накапливаться в раковой опухоли, обеспечивая тем самым возможность ее детектирования. Кроме того, под действием света с подходящей длиной волны они способны продуцировать синглетный кислород, который вызывает гибель раковых клеток. Эта концепция лежит в основе фотодинамической терапии (ФДТ) онкологических заболеваний.

К настоящему времени описан обширный ряд фотосенсибилизаторов (ФС) для фотодинамической терапии (ФДТ) на основе хлоринов, порфиринов, фталоцианинов и некоторых других тетрапирролов. Порфиразины, имеющие подобно всем тетрапиррольным пигментам уникальную макросистему пи-сопряжения, также перспективны в качестве агентов ФДТ [Е.R. Trivedi, A.S. Harney, М.В. Olive, I. Podgorski, К. Moin, В.F. Sloane, A.G.M. Barrett, T.J. Meade, and В.M. Hoffman. Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation // PNAS. - 2010. - V. 107. - №4. - Р1284-1288].

Для некоторых флуорофоров наблюдается различная степень свободы внутримолекулярного движения фрагментов светоизлучающей молекулы в средах с различной вязкостью [М.A. Haidekker, Е.A. Theodorakis. Environment-sensitive behavior of fluorescent molecular rotors // J. of Biol. Eng. - 2010 - V.4. - P. 1-14. T. Effect of viscosity on the fluorescence quantum yield of some dye systems / T. G. Hoffmann // J. Phys Chem. - 1971. - V. 75. - P. 63-76].

Высоковязкие среды затрудняют внутримолекулярное движение (вращение или скручивание вокруг отдельных химических связей) и связанную с этим диссипацию энергии возбужденного состояния. Это приводит к сильному возрастанию интенсивности флуоресценции. Поскольку зависимость параметров флуоресценции от вязкости среды может быть описана простыми математическими уравнениями такие соединения могут быть использованы в качестве зондов локальной вязкости [, Т. Effect of viscosity on the fluorescence quantum yield of some dye systems / T. Forster, G. Hoffmann// J. Phys Chem. - 1971. - V. 75. - Р. 63-76].

Известно, что внутриклеточная вязкость сильно возрастает в процессе фотоиндуцированной гибели клетки [M. Kuimova, S. Butchway, A. Parker, H.Anderson, P.Ogiby Nature Chemistry, 1, 2009, 69-73]. Это создает основу для непосредственного контроля за процессом фотодинамического воздействия по изменению параметров флуоресценции фотосенсибилизатора, количественно связанных со значениями внутриклеточной вязкости.

Такой подход впервые успешно осуществлен на клеточных культурах с использованием ранее полученного и описанного тетра(4-фторфенил)тетрацианопорфиразина (III) [М.A. Izquierdo, A. Vysniauskas, S.A. Lermontova, I.S. Grigoryev, N.Y. Shilyagina, I.V. Balalaeva, Larisa G. Klapshina and M.K. Kuimova. Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy // J. Mater.Chem B, 2015, 3, 1089-1096]. Было показано, что порфиразин III (фиг. 1) является не только сенсибилизатором фотодинамического воздействия на раковые клетки, но и высокочувствительным сенсором внутриклеточной вязкости, позволяющим проводить ее количественную оценку в различные моменты процесса фотодинамической терапии.

Однако недостатком порфиразина III является чрезвычайно низкий квантовый выход красной флуоресценции в низковязких средах. Поскольку вязкость внутри живой клетки меняется в широком диапазоне от 1-2 до 140 сП эффективность порфиразина III как фотосенсибилизатора при локализации в клеточных компартментах с низкой вязкостью может быть сильно понижена.

В задачу изобретения положено создание новых порфиризинов и порфиразиновых комплексов гадолиния, обеспечивших желаемую настройку фотофизических свойств макроцикла.

Техническим результатом от использования изобретения является повышение фотодинамической активности.

Это достигается тем, что порфиразин представлен общей формулой:

,

где R - заместитель, R=BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил); при R=BnOPh (4-бензилоксифенил) представляет собой тетра(4-бензилоксифенил)тетрацианопорфиразин; при R=4FBnOPh (4-(4-фторбензилокси)фенил) представляет собой тетра(4-(4-фторбензилокси)фенил)тетрацианопорфиразин.

Поставленная задача достигается также тем, что порфиразиновый комплекс гадолиния представлен общей формулой:

где R - заместитель, R=BnOPh (4-бензилоксифенил), 4FPh (4-фторфенил); при R=BnOPh (4-бензилоксифенил) представляет собой тетра(4-бензилоксифенил) тетрацианопорфиразинат гадолиния; при R=4FPh (4-фторфенил) представляет собой тетра(4-фторфенил)тетрацианопорфиразинат гадолиния.

Поставленная задача достигается также тем, что указанные соединения применяют в качестве мультимодальных агентов фотодинамической терапии злокачественных новообразований, а именно в качестве фотосенсибилизаторов и одновременно в качестве оптических сенсоров внутриклеточной вязкости.

На фиг. 1 представлена общая формула порфиразинов I и II и порфиразина III, где R=BnOPh (I, 4-бензилоксифенил), 4FBnOPh (II, 4-(4-фторбензилокси)фенил), 4FPh (III, 4-фторфенил).

На фиг. 2 представлена общая формула порфиразиновых комплексов гадолиния IGd и IIIGd, где R- заместитель, R=BnOPh (IGd, 4-бензилоксифенил), 4FPh (IIIGd, 4-фторфенил).

На фиг. 3 представлена схема синтеза порфиразинов в виде свободных оснований I и II, III и металлокомплексов IGd и IIIGd.

На фиг. 4 представлена зависимость жизнеспособности клеток А431 от концентрации в среде фотосенсибилизатора, где: (А) - в среде порфиразин I-III, инкубация клеток линии А431 в среде с красителем в темноте; (Б) - в среде порфиразин I-III, инкубация клеток линии А431 в среде с облучением светом 635 нм в дозе 20 Дж/см2; (В) - в среде порфиразин IGd и IIIGd, инкубация клеток линии А431 в среде с красителем в темноте и с облучением светом 635 нм в дозе 20 Дж/см2.

На фиг. 5 представлена зависимость квантового выхода флюоресценции порфиразинов от вязкости растворителя (спиртово-глицериновые смеси), где - для порфиразина I; - для порфиразина II; - для порфиразина III; - для порфиразинового комплекса гадолиния IGd; ♦ - для порфиразинового комплекса гадолиния IIIGd.

Была осуществлена химическая модификация периферийного обрамления порфиразинов. Это было достигнуто варьированием ароматических альдегидов, являющихся стартовыми материалами при синтезе порфиразинов (фиг. 3).

Замена 4-фторфенильных заместителей на 4-бензилоксифенильный и 4(4-фторбензилокси)фенильный заместители привела к существенному повышению квантового выхода (QY) красной флуоресценции порфиразинов в воде (Таблица 1).

Синтез порфиразина осуществляют следующим образом

Синтез тетра(4-бензилоксифенил)тетрацианопорфиразина (I).

Процедуру синтеза осуществляют в соответствии с фиг. 3. В качестве стартового материала используют 4-бензилоксибензальдегид. На первой стадии при взаимодействии 4-бензилоксибензальдегида с малононитрилом в присутствии пиперидина образуется 2-(4-бензилоксифенил)-1,1-дицианоэтилен, который под действием цианистого калия в кислой среде превращается в 2-(4-бензилоксифенил)-1,1,2-трицианоэтан (вторая стадия). На третьей стадии происходит дегидрирование в присутствии N-хлорсукцидимида с образованием замещенного 2-(4-бензилоксифенил)-1,1,2-трицианоэтилена.

Металлокомплекс получают реакцией 2-(4-бензилоксифенил)-1,1,2-трицианоэтилена с бис(инденил) иттербием в вакууме при мольном соотношении реагентов 5:1. На следующей стадии тетра(4-бензилоксифенил)тетрацианопорфиразинат иттербия растворяют в 2 мл трифторуксусной кислоты и перемешивают при комнатной температуре в течение 30 мин. Далее добавляют ~30 мл воды, наблюдают выпадение темно-синего осадка, отцентрифугировывают, тщательно промывают водой до нейтральной среды. Очищают продукт с помощью колоночной хроматографии (силикагель 60, 40-60 μm, элюент THF). Выход целевого продукта 83%. ИК-спектр (KBr, λmax/см-1): 3400 (N-H); 2205 (C≡N); 1687, 1678 (C≡N), 1600 (С=С); 1218, 1025 (Car-О- Cal). УФ/видимый спектр (ТГФ, λmax/нм): 361, 397 (полоса Соре); 617 (Q-полоса). Элементный анализ. Вычислено: С - 75.64%; Н - 4.06%; О - 5.6%; N - 14.70%. Найдено: С -76.70%, Н - 4.16%, О - 5.4%; N- 14,02%.

Синтез тетра(4-(4-фторбензилокси)фенил)тетрацианопорфиразин (II).

Процедуру синтеза осуществляют в соответствии с фиг. 3. В качестве стартового материала используют 4-(4-фторбензил)оксибензальдегид. На первой стадии при взаимодействии 4-(4-фторбензил)оксибензальдегида с малононитрилом в присутствии пиперидина образуется 2-(4-(4-фторбензил)оксифенил)-1,1-дицианоэтилен, который под действием цианистого калия в кислой среде превращается в 2-(4-(4-фторбензил)оксифенил)-1,1,2-трицианоэтан (вторая стадия). На третьей стадии происходит дегидрирование в присутствии N-хлорсукцидимида с образованием замещенного 2-(4-(4-фторбензил)оксифенил)-1,1,2-трицианоэтилена.

Металлокомплекс получают реакцией 2-(4-(4-фторбензил)оксифенил)-1,1,2-трицианоэтилена с бис(инденил) иттербием в вакууме при мольном соотношении реагентов 5:1. На следующей стадии тетра(4-(4-фторбензилокси)фенил)тетрацианопорфиразинат иттербия растворяют в 2 мл трифторуксусной кислоты и перемешивают при комнатной температуре в течение 30 мин. Далее добавляют ~30 мл воды, наблюдают выпадение темно-синего осадка, отцентрифугировывают, тщательно промывают водой до нейтральной среды. Очищают продукт с помощью колоночной хроматографии (силикагель 60, 40-60 μm, элюент THF). Выход целевого продукта 69%. ИК-спектр (KBr, λmax/см-1): 3403 (N-H); 2201 (C≡N); 1681 (C≡N), 1603 (С=С); 1218, 1038 (Car -О- Cal); 1164, 1102 (Car -F). УФ/видимый спектр (ТГФ, λmax/нм): 356, 397 (полоса Соре); 610 (Q-полоса). Вычислено: С - 71.16%; Н - 3.48%; О - 5.27%; F - 6,25%; N - 13.83%. Найдено: С - 72.16%, Н - 3.56%, О - 4.97%; F - 6.11%; N- 13,19%.

Синтез порфиразиных коплексов гадолиния осуществляют следующим образом.

Синтез тетра(4-бензилоксифенил)тетрацианопорфиразината гадолиния (IGd)

Тетра(4-бензилоксифенил)тетрацианопорфиразин (13.5 мг, 0.010 ммоль) растворили в ТГФ, далее добавили трис[N,N-бис(триметилсилил)амид] гадолиния (20 мг, 0.029 ммоль) в инертной атмосфере. Через 24 ч реакционную смесь открыли на воздух. Осадок отфильтровали и после тщательного удаления ТГФ и гексаметилдисилазана в вакууме был получен продукт синего цвета GdPz⋅2H2O (выход 75%). ИК-спектр (KBr, λmax/см-1): 2203 (C≡N); 1686, 1675 (C=N), 1600 (С=С); 1218, 1023 (Car -О- Cal)MALDI: m/z=1351. Элементный анализ. Вычислено для C72H49N12O7Gd: С - 63.99%, Н-3.65%, N-12.44%, Gd-11.64%. Найдено: С -63.19%, Н- 3.18%,N- 11.95%, Gd- 12.79%.

Синтез тетра(4-фторфенил)тетрацианопорфиразината гадолиния (IIIGd).

Тетра(4-фторфенил)тетрацианопорфиразин (8 мг, 0.010 ммоль) растворили в ТГФ, далее добавили трис[N,N-бис(триметилсилил)амид] гадолиния (20 мг, 0.029 ммоль) в инертной атмосфере. Через 24 ч реакционную смесь открыли на воздух. Осадок отфильтровали и после тщательного удаления ТГФ и гексаметилдисилазана в вакууме был получен продукт синего цвета GdPz⋅2H2O (8 мг, 0.008 ммоль, выход 80%). ИК-спектр (KBr, λmax/см-1): 2925, 2202, 1600, 1505, 1455, 1417, 1394, 1303, 1262, 1218, 1157, 1128 1103. MALDI: m/z=998. Элементный анализ. Вычислено для C44H21F4N12O3Gd: С - 52.91%, Н-2.10%, F-7.62%, N-16.83%, Gd-15.73%. Найдено: С - 52.25%, Н - 2.80%, F - 8.12%, N - 17.30%, Gd - 16.15%.

Аналогично может быть получен порфиразиновый комплекс гадолиния на основе порфиразина II. Процедура синтеза может быть осуществлена по схеме, представленной на фиг. 3. Полученное соединение будет обладать такими же свойствам, что и представленные в заявке соединения.

Фотодинамическая активность фотосенсибилизаторов I, II, IGd, IIIGd в системе in vitro.

Красители обладают высокой фотоиндуцированной активностью в отношении опухолевых клеток А431 при варьировании концентрации раствора красителя от 0,1 до 10 мкМ и времени инкубации до светового воздействия 4 часа. Исследование световой активности проводилось с использованием специально разработанного светодиодного излучателя для получения равномерного светового потока в стандартных 96-луночных планшетах. Доза облучения составляла 20 Дж/см2 при плотности мощности 20 мВт/см2 [Н.Ю. Шилягина, В.И. Плеханов, И.В. Шкунов, П.А. Шилягин, Л.В. Дубасова, А.А. Брилкина, Е.А. Соколова, И.В. Турчин, И.В. Балалаева. Светодиодный излучатель для исследования in vitro световой активности препаратов для фотодинамической терапии // Современные технологии медицине. 2014, Т. 6, №2, С. 15-24]. Жизнеспособность клеточной культуры оценивали через 24 часа после облучения с помощью микротитрационного теста для анализа метаболической активности (МТТ-тест), позволяющего определить ингибирующую концентрацию IC50 - концентрацию соединения, вызывающую снижение роста клеток на 50% (или их гибель). Результаты оценки жизнеспособности клеток А431 после облучения с применением фотосенсибилизаторов I-III, IGd и IIIGd представлены на фиг. 4. Величины IC50 приведены в таблице 2.

Как видно из приведенных данных, эффективность фотодинамического действия фотосенсибилизаторов I, II, IGd и IIIGd не уступает таковой для порфиразина III. Однако, для порфиразина III наблюдается более высокая темновая токсичность, чем для порфиразинов I, II, и порфиразиновых комплексов гадолиния IGd и IIIGd.

Исследование вязкостной чувствительности квантового выхода красной флуоресценции порфиразинов I, II, III, и порфиразиновых комплексов гадолиния IGd, IIIGd

Наблюдается существенное возрастание интенсивности флуоресценции порфиразинов I-III, и порфиразиновых комплексов гадолиния IGd, IIIGd с увеличением вязкости на примере этанол-глицериновых смесей.

Величина тангенса угла наклона прямых, приведенных на фиг. 5, характеризует «степень» вязкостной чувствительности параметров флюоресценции.

При более высоком квантовом выходе красной флуоресценции порфиразины I, II, и порфиразиновые комплексы гадолиния IGd, IIIGd практически не уступают III по вязкостной чувствительности квантового выхода.

Фотодинамическая терапия опухоли с использованием порфиразиновых комплексов гадолиния IGd и IIIGd в качестве фотосенсибилизаторов.

Исследование выполнено на мышах линии Balb/c, самках, в количестве 15 животных. Животных содержали в стандартных условиях вивария с 12-ти часовым световым ритмом и свободным доступом к корму и воде. Опухоль СТ26 (колоректальный рак мышей) прививали путем подкожной инъекции 200 тыс. клеток в 100 мкл соляно-фосфатного буфера PBS в левое бедро. Непосредственно перед экспериментом животные были случайным образом разделены на 3 группы по 5 мышей: ФДТ с IIIGd, ФДТ с IGd и контроль. Препараты IIIGd и IGd вводили внутривенно в хвостовую вену в дозе 12 мг/кг. Контролем служили животные с аналогичными опухолями без воздействий. ФДТ проводили на 10-11 день роста, когда опухоли достигали размера 5-6 мм. Облучение опухолей проводили с помощью лазера (MGL, Changchun New Industries Optoelectronics Tech. Co., Ltd. Китай) с длиной волны 593 нм при плотности мощности 100 мВт/см2 в течение 20 мин, доставляя таким образом плотность энергии 120 Дж/см2, однократно. Мощность лазера контролировали с помощью измерителя РМ100А (Thorlabs, Германия). Замер размеров опухолевых узлов выполняли 3 раза в неделю с помощью штангенциркуля, измеряя опухолевые узлы по двум взаимно перпендикулярным направлениям. Объем опухолей вычисляли по формуле V=A×B×B/2, где А - длина опухоли, В - ширина. Коэффициент ТРО рассчитывали по формуле TPO=(Vк-Vo)/Vк ×100%, где Vк и Vo - средний объем опухолей в контрольной и опытной группах соответственно.

В результате ФДТ было достигнуто торможение опухолевого роста у 5 животных из 5 в группе IGd. Объем опухолей в данной группе на 21 день роста (10 дней после ФДТ) составлял 838±265 мм. Коэффициент торможения роста опухоли (ТРО) в группе IGd составил 63%. В группе IIIGd средний объем 5-ти опухолей составлял 2506±816 мм3.

В контрольной группе 5 опухолей из 5 достигали объема в среднем 2252±710 мм3. Полученный результат показывает, что при использовании в качестве фотосенсибилизатора IIIGd мы не наблюдаем уменьшения размера опухоли по сравнению с контрольной группой животных, не подвергшихся ФДТ, тогда как в случае использования IGd мы наблюдаем значительное уменьшение объема опухоли после процедуры ФДТ. Таким образом, проведенное исследование позволяет сделать вывод о существенно более высокой фотодинамической активности комплекса IGd и перспективности его применения в качестве фотосенсибилизатора для ФДТ.

Представленные примеры демонстрируют методы получения порфиразинов I и II, и порфиразиновых комплексов гадолиния IGd, IIIGd, а также достижение существенно большей их эффективности в качестве сенсибилизаторов ФДТ по сравнению с ранее известным порфиразином III. При этом порфиризины I, II, и порфиразиновые комплексы гадолиния IGd, IIIGd не уступают порфиризину III по уровню вязкостной чувствительности параметров флуоресценции. Уникальной особенностью порфиразинов I, II, и порфиразиновых комплексов гадолиния IGd и IIIGd является сочетание их высокой фотодинамической активности с аномально сильной зависимостью флуоресцентных параметров (квантового выхода и времени жизни флюоресценции) от вязкости среды.

Таким образом, полученные соединения могут быть основой для более эффективных мультимодальных противораковых препаратов, чем ранее известный порфиразин III.

Похожие патенты RU2621710C1

название год авторы номер документа
ЦИАНОПОРФИРАЗИНОВОЕ СВОБОДНОЕ ОСНОВАНИЕ И ЕГО ПРИМЕНЕНИЕ 2017
  • Лермонтова Светлана Алексеевна
  • Клапшина Лариса Григорьевна
  • Григорьев Илья Сергеевич
  • Балалаева Ирина Владимировна
  • Шилягина Наталья Юрьевна
  • Пескова Нина Николаевна
RU2665471C1
Способ фотодинамической терапии с контролем эффективности в режиме реального времени 2017
  • Балалаева Ирина Владимировна
  • Шилягина Наталья Юрьевна
  • Воденеев Владимир Анатольевич
  • Уткина Анастасия Владимировна
  • Воловецкий Артур Борисович
  • Лермонтова Светлана Алексеевна
  • Клапшина Лариса Григорьевна
  • Григорьев Илья Сергеевич
  • Гамаюнов Сергей Викторович
  • Турчин Илья Викторович
  • Плеханов Владимир Иванович
RU2672806C1
Тетра(пирен-1-ил)тетрацианопорфиразин как мультифункциональный агент терапии злокачественных новообразований 2019
  • Лермонтова Светлана Алексеевна
  • Клапшина Лариса Григорьевна
  • Балалаева Ирина Владимировна
  • Ладилина Елена Юрьевна
  • Любова Татьяна Сергеевна
  • Григорьев Илья Сергеевич
RU2725641C1
Тетра(бензотиофен-2-ил)тетрацианопорфиразин как мультимодальный агент фотодинамической терапии 2018
  • Лермонтова Светлана Алексеевна
  • Клапшина Лариса Григорьевна
  • Балалаева Ирина Владимировна
  • Ладилина Елена Юрьевна
  • Григорьев Илья Сергеевич
RU2684623C1
СПОСОБ ОЦЕНКИ СОДЕРЖАНИЯ ПЕРОКСИДА ВОДОРОДА В ОПУХОЛЕВЫХ КЛЕТКАХ ПРИ ФОТОДИНАМИЧЕСКОМ ВОЗДЕЙСТВИИ 2018
  • Балалаева Ирина Владимировна
  • Брилкина Анна Александровна
  • Шилягина Наталья Юрьевна
  • Пескова Нина Николаевна
  • Костюк Алексей Борисович
  • Маслова Анна Сергеевна
RU2700421C1
ПРОИЗВОДНОЕ ЦИНКОВОГО МЕТАЛЛОКОМПЛЕКСА ХЛОРИНА-e И ЕГО ПРИМЕНЕНИЕ 2018
  • Федоров Алексей Юрьевич
  • Нючев Александр Владимирович
  • Балалаева Ирина Владимировна
  • Отвагин Василий Федорович
  • Кузьмина Наталья Сергеевна
  • Крылова Любовь Владимировна
RU2691754C1
СПОСОБ ПОЛУЧЕНИЯ НЕСИММЕТРИЧНЫХ ПОРФИРАЗИНОВ 1997
  • Кулинич В.П.
  • Васильев С.И.
  • Шапошников Г.П.
  • Смирнов Р.П.
RU2139289C1
ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Ефременко Анастасия Владимировна
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2476218C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лужков Юрий Михайлович
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2479585C1
НИЗКОМОЛЕКУЛЯРНЫЕ ПРОИЗВОДНЫЕ КАРБОКСАМИДНЫХ ГАЛОГЕНИРОВАННЫХ ПОРФИРИНОВ, А ИМЕННО ХЛОРИНОВ И БАКТЕРИОХЛОРИНОВ, И ИХ ПРИМЕНЕНИЯ 2016
  • Перейра Нашсименту Кошта Гонсалу
  • Феррейра Гонсалвес Нуну Паулу
  • Перейра Мунтейру Карлуш Жорже
  • Рейш Ди Абреу Артур Карлуш
  • Ферраш Кардозу Соареш Элдер Тан
  • Боржиш Рока Луиш Габриел
  • Скаберле Фабио Антонио
  • Мигенш Перейра Мария
  • Да Силва Арнаут Морейра Луиш Гильерме
RU2718923C2

Иллюстрации к изобретению RU 2 621 710 C1

Реферат патента 2017 года Порфиразин, порфиразиновый комплекс гадолиния и их применение

Изобретение относится к порфиразину общей формулы

в которой R представляет собой BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил). Изобретение также относится к порфиразиновому комплексу гадолиния и к применению порфиразина и порфиразинового комплекса гадолиния в качестве мультимодального агента фотодинамической терапии злокачественных новообразований. Технический результат: получены новые порфиразины с высокой фотодинамической активностью. 3 н. и 4 з.п. ф-лы, 5 ил., 2 табл.

Формула изобретения RU 2 621 710 C1

1. Порфиразин общей формулы

где R - заместитель, R=BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил).

2. Порфиразин по п. 1, отличающийся тем, что при R=BnOPh (4-бензилоксифенил) представляет собой тетра(4-бензилоксифенил)тетрацианопорфиразин.

3. Порфиразин по п. 1, отличающийся тем, что при R=4FBnOPh (4-(4-фторбензилокси)фенил) представляет собой тетра(4-(4-фторбензилокси)фенил)тетрацианопорфиразин.

4. Порфиразиновый комплекс гадолиния общей формулы

где R - заместитель, R=BnOPh (4-бензилоксифенил), 4FPh (4-фторфенил).

5. Порфиразиновый комплекс гадолиния по п. 4, отличающийся тем, что при R=BnOPh (4-бензилоксифенил) представляет собой тетра(4-бензилоксифенил)тетрацианопорфиразинат гадолиния.

6. Порфиразиновый комплекс гадолиния по п. 4, отличающийся тем, что при R=4FPh (4-фторфенил) представляет собой тетра(4-фторфенил)тетрацианопорфиразинат гадолиния.

7. Применение порфиразина и порфиразинового комплекса гадолиния по пп. 1-6 в качестве мультимодального агента фотодинамической терапии злокачественных новообразований, а именно в качестве фотосенсибилизатора и одновременно в качестве оптического сенсора внутриклеточной вязкости.

Документы, цитированные в отчете о поиске Патент 2017 года RU2621710C1

Лермонтова С
А
"Новые флюоресцентные порфиразиновые свободные основания и металлокомплексы для применения в фотонике и биофотонике" Диссертация на соискание учёной степени кандидата химических наук, Нижнй Новгород, 2014, 164 с
Шилягина Н
Ю
"Исследование тетраарилтетрацианопорфиразинов в качестве потенциальных фотосенсибилизаторов для фотодинамической терапии и флуоресцентной диагностики" Автореферат диссертации на соискание учёной степени кандидата биологических наук, Воронеж, 2014, 24 с
Лермонтова С.А
и др
"Новые порфиразиновые макроциклы с высокой вязкостной чувствительностью флуоресцентных параметров" Журнал Общей Химии, т.26, N6, 2016, 1000-1009
M
A
Izquierdo et al
"Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy" Journal of materials Chemistry B, 3, 2015, 1089-1096.

RU 2 621 710 C1

Авторы

Клапшина Лариса Григорьевна

Лермонтова Светлана Алексеевна

Пескова Нина Николаевна

Балалаева Ирина Владимировна

Шилягина Наталья Юрьевна

Ширманова Марина Вадимовна

Гаврина Алена Игоревна

Южакова Диана Владимировна

Даты

2017-06-07Публикация

2016-08-23Подача