Изобретение относится к гидрометаллургии, конкретно к способам выделения оксидов цинка и меди из растворов, образующихся в процессе обработки вторичного сырья.
Известны способы извлечения соединений цинка и меди из вторичного сырья путем его обработки растворами аммиака и солей аммония с получением раствора, содержащего растворимые соединения (аммиакаты) цинка и меди (И.Ф. Худяков и др. Технология вторичных цветных металлов. - М.: Металлургия, 1980, с. 166).
Известны способы извлечения соединений цинка и меди из вторичного сырья путем его обработки растворами аммиака с последующим выделением соединений цинка и меди, в частности оксидов, в результате их осаждения при отгонке аммиака из раствора (SU 812849, C22B 15/10, 1981; SU 1157101, C22B 15/10, 19/24, 1985; SU 1444379, C22B 19/24, 15/10, 1988; RU 2055921, C22B 7/00, 19/00, 1996; RU 2099431, C22B 3/14, 1997).
Известен способ выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, включающий отгонку аммиака и последующее отделение осадков оксидов цинка и меди (SU 1146331, C22B 15/10, 19/24, 1985). Согласно этому способу сначала осуществляют отгонку аммиака до pH раствора 9,0-9,5, после чего полученную пульпу выдерживают в течение 30-60 минут и отделяют осадок оксида цинка, затем отгоняют аммиак до pH 7,0-7,5, выдерживают пульпу в течение 30-60 минут и отделяют осадок оксида меди. Недостатком данного способа является длительность процесса выделения оксидов цинка и меди из раствора, обусловленная необходимостью выдерживания пульпы в течение определенного времени, большие затраты тепла на длительное кипячение растворов, низкая степень осаждения оксидов.
Наиболее близким к предложенному по технической сущности и достигаемому результату является известный способ выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, включающий отгонку аммиака под вакуумом и последующее отделение осадков оксидов цинка и меди (SU 1712433, C22B 3/44, 1992). Согласно этому способу сначала осуществляют отгонку аммиака при остаточном давлении 20-100 кПа в течение 5-25 мин, разбавляют раствор водой в 1,5-6 раз и отделяют осадок оксида цинка, затем отгоняют аммиак до pH 7,0-7,5, разбавляют раствор водой в 1,5-6 раз и отделяют осадок оксида меди. Способ обеспечивает высокую степень селективного осаждения оксидов. Недостатками способа являются большой расход теплоты на нагревание и кипячение большого количества раствора для отгонки свободного и связанного в комплексные соединения аммиака, а также необходимость использования большого количества воды.
Техническая задача, на решение которой направлено изобретение, состоит в сокращении затрат тепловой энергии на отгонку аммиака из водно-аммиачного раствора соединений цинка и меди.
Для решения поставленной задачи предложен способ выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, включающий отгонку аммиака под вакуумом и последующее отделение осадков оксидов цинка и меди, отличающийся тем, что водно-аммиачный раствор, содержащий 4-10% аммиака, перед отгонкой подвергают нанофильтрации через щелочеустойчивую мембрану, концентрируя в ретанте соединения меди и цинка и удаляя часть аммиака в пермеат.
Было установлено, что нанофильтрация водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, позволяет разделить этот раствор на пермеат, содержащий большую часть аммиака, содержавшегося в исходном растворе, и ретант, содержащий большую часть соединений цинка и меди, содержавшихся в исходном растворе. Ретант далее обрабатывают по известному способу для выделения оксидов цинка и меди, а пермеат может быть повторно использован для водно-аммиачной обработки вторичного сырья, содержащего соединения цинка и меди.
Технический результат, достигаемый с помощью предложенного способа, состоит в том, что благодаря его осуществлению сокращается количество аммиака, подлежащего отгонке из раствора, и объем этого раствора, что и приводит к снижению тепловых затрат на отгонку и уменьшению количества воды, используемой для разбавления раствора при осаждении оксидов.
Обработке по предложенному способу могут быть подвергнуты водно-аммиачные растворы, получаемые в различных процессах аммиачной обработки вторичного сырья, например растворы из мельницы мокрого помола, кучного или чанового выщелачивания и др.
Щелочеустойчивые мембраны и содержащие их мембранные модули известны и представляют собой серийную промышленную продукцию (см., например, В.П. Дубяга, Л.П. Перепечкин, Е.Е. Каталевский. Полимерные мембраны. - М.: Химия, 1981; http://www.vladipor.ru/catalog/&cid=004).
По предложенному способу целесообразно обрабатывать водно-аммиачные растворы соединений цинка и меди, содержащие не менее 4% аммиака, так как при более низком содержании аммиака возможно выпадение осадка оксида цинка в процессе нанофильтрации, приводящее к забивке каналов прохождения раствора и пор мембраны. В случае обработки растворов, содержащих до 10% аммиака, целесообразно перед нанофильтрацией разбавлять раствор водой для снижения концентрации аммиака в ретанте и уменьшения затрат теплоты на его отгонку.
Сущность изобретения иллюстрируется приведенными ниже примерами.
Пример 1. Раствор выщелачивания шлака объемом 3660 мл, содержащий 5% аммиака, 1,66 г/л цинка и 0,21 г/л меди, подвергают нанофильтрации в модуле, снабженном рулонным элементом ЭРН-Б-45-350 на базе мембраны типа ОПМН-П (http://www.vladipor.ru/catalog/show/&cid=009&id=2). Анализ растворов на содержание аммиака, цинка и меди до и после мембранного разделения проводили в этом и последующих примерах с помощью известных методов: аммиак - формалиновым методом (Крешков А.П. Основы аналитической химии. Качественный и количественный анализ. Кн. 2. Теоретические основы. Количественный анализ. - М: Химия, 1971, с. 187), цинк - трилонометрическим методом (Крешков А.П. Основы аналитической химии. Качественный и количественный анализ. Кн. 2. Теоретические основы. Количественный анализ. - М.: Химия, 1971, с. 329-339), медь - иодометрическим методом (Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. - М.: Высшая школа, 1969, ч. 2, с. 883). Проницаемость аппарата под давлением 2 МПа составляет в среднем 212 л/м2⋅ч. Концентрация в ретанте: цинк 5,46 г/л, медь 0,69 г/л, аммиак 5,5%; объем ретанта 910 мл. Концентрация в пермеате: цинк 0,4 г/л, медь 0,05 г/л, аммиак 4%; объем пермеата 2760 мл. Селективность удержания в ретанте цинка 81,5%, меди 81,8%, аммиака 31,5%. Ретант подают на отгонку аммиака под вакуумом и осаждение оксидов по известному способу.
Пример 2. Раствор выщелачивания шлака объемом 3500 мл, содержащий 10% аммиака, 1,84 г/л цинка и 0,25 г/л меди, подвергают нанофильтрации в условиях примера 1. Проницаемость аппарата составляет в среднем 199,5 л/м2⋅ч. Концентрация в ретанте: цинк 5,06 г/л, медь 0,69 г/л, аммиак 18,4%; объем ретанта 950 мл. Концентрация в пермеате: цинк 0,45 г/л, медь 0,08 г/л, аммиак 6,9%; объем пермеата 2550 мл. Селективность удержания в ретанте цинка 74,5%, меди 74,9%, аммиака 51,5%. Ретант подают на отгонку аммиака под вакуумом и осаждение оксидов по известному способу.
Пример 3. Раствор выщелачивания шлака объемом 3500 мл, содержащий 4% аммиака, 1,72 г/л цинка и 0,17 г/л меди, подвергают нанофильтрации в условиях примера 1. Проницаемость аппарата составляет в среднем 310,45 л/м2⋅ч. Концентрация в ретанте: цинк 5,76 г/л, медь 0,59 г/л, аммиак 4%; объем ретанта 930 мл. Концентрация в пермеате: цинк 0,26 г/л, медь 0,02 г/л, аммиак 3,9%; объем пермеата 2570 мл. Селективность удержания в ретанте цинка 89,0%, меди 91,7%, аммиака 29,3%. Ретант подают на отгонку аммиака под вакуумом и осаждение оксидов по известному способу.
Пример 4. Раствор выщелачивания шлака объемом 3700 мл, содержащий 7% аммиака, 1,82 г/л цинка и 0,2 г/л меди, подвергают нанофильтрации в условиях примера 1. Проницаемость аппарата составляет в среднем 270,5 л/м2⋅ч, Концентрация в ретанте: цинк 5,80 г/л, медь 0,70 г/л, аммиак 8,5%; объем ретанта 980 мл. Концентрация в пермеате: цинк 0,39 г/л, медь 0,02 г/л, аммиак 6,46%; объем пермеата 2720 мл. Селективность удержания в ретанте цинка 84,4%, меди 93,2%, аммиака 32,2%. Ретант подают на отгонку аммиака под вакуумом и осаждение оксидов по известному способу.
Пример 5. Раствор выщелачивания шлака объемом 2590 мл, содержащий 10% аммиака, 1,84 г/л цинка и 0,25 г/л меди, разбавляют водой до концентрации аммиака 7% с увеличением его объема до 3700 мл и подвергают нанофильтрации в условиях примера 1. Проницаемость аппарата составляет в среднем 270,0 л/м2⋅ч, Концентрация в ретанте: цинк 4,53 г/л, медь 0,55 г/л, аммиак 8,4%; объем ретанта 990 мл. Концентрация в пермеате: цинк 0,11 г/л, медь 0,04 г/л, аммиак 6,49%; объем пермеата 2710 мл. Селективность удержания в ретанте цинка 93,9%, меди 84,1%, аммиака 32,1%. Ретант подают на отгонку аммиака под вакуумом и осаждение оксидов по известному способу.
Пример 6 (сравнительный). Раствор выщелачивания шлака объемом 3800 мл, содержащий 3% аммиака, 1,61 г/л цинка и 0,16 г/л меди, подвергают нанофильтрации в условиях примера 1. Проницаемость аппарата составила в среднем 320,4 л/м2⋅ч, Концентрация в ретанте: цинк 1,8 г/л, медь 0,6 г/л, аммиак 3,0%, объем ретанта 850 мл. Концентрация в пермеате: цинк 0,2 г/л, медь 0,02 г/л, аммиаку 3,0%; объем пермеата 2950 мл. Ретант содержит осадок оксида цинка, что при большей длительности процесса привело бы к неминуемой забивке пор мембраны.
Как видно из примеров, предложенный способ позволяет концентрировать раствор по цинку и меди в 2,5-3,5 раза, одновременно удаляя аммиак в пермеат на 50-70%. Пример 2 показывает, что обработка раствора с концентрацией аммиака 10% приводит к возрастанию концентрации аммиака в ретанте до 18,5% и, соответственно, к увеличению затрат теплоты на его отгонку из ретанта. Предварительное разбавление такого раствора до концентрации аммиака 7% (пример 5) приводит к снижению концентрации аммиака в ретанте до того же уровня, что в примере 4.
название | год | авторы | номер документа |
---|---|---|---|
Способ выделения оксидов цинка и меди из водно-аммиачных растворов | 1990 |
|
SU1712433A1 |
Способ извлечения цинка и меди из полупродуктов переработки цинковых руд | 1987 |
|
SU1444379A1 |
Способ получения аффинированного серебра из промпродуктов драгметального производства, содержащих серебро в форме хлорида | 2021 |
|
RU2779554C1 |
Способ получения оксида цинка | 2015 |
|
RU2618596C2 |
СПОСОБ ПЕРЕРАБОТКИ ХЛОРИДНОГО ШЛАКА, СОДЕРЖАЩЕГО БЛАГОРОДНЫЕ МЕТАЛЛЫ | 1998 |
|
RU2150521C1 |
Способ переработки цинксодержащего гальванического шлама для получения наночастиц оксида цинка | 2022 |
|
RU2799182C1 |
Способ выделения оксида меди (I) CuO из многокомпонентных сульфатных растворов тяжелых цветных металлов | 2020 |
|
RU2744291C1 |
СПОСОБ ПЕРЕРАБОТКИ ПЫЛЕОТХОДОВ, СОДЕРЖАЩИХ ТЯЖЕЛЫЕ ЦВЕТНЫЕ МЕТАЛЛЫ | 1993 |
|
RU2061770C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ПУТЕМ КАРБОНИЗИРОВАННОГО ВЫЩЕЛАЧИВАНИЯ ВАНАДИЕВОГО ШЛАКА И ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ СРЕДЫ | 2022 |
|
RU2807983C1 |
Способ получения пентаоксида ванадия высокой чистоты | 2023 |
|
RU2817727C1 |
Изобретение относится к гидрометаллургии, конкретно к способу выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, а также 4-10% аммиака, и образующегося в процессе водно-аммиачной обработки вторичного сырья, содержащего соединения цинка и меди, например в мельнице мокрого помола, при кучном или чановом выщелачивании. Раствор подвергают нанофильтрации через щелочеустойчивую мембрану, концентрируя в ретанте соединения цинка и меди и удаляя часть аммиака в пермеат, с последующей отгонкой аммиака из ретанта под вакуумом и осаждением оксидов. При необходимости раствор перед нанофильтрацией разбавляют водой. Пермеат может быть повторно использован для водно-аммиачной обработки вторичного сырья. Технический результат - сокращение количества аммиака, подлежащего отгонке из раствора, и объема этого раствора, что приводит к снижению тепловых затрат на отгонку и уменьшению количества используемой воды. 2 з.п. ф-лы, 5 пр.
1. Способ выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, включающий отгонку аммиака под вакуумом и последующее отделение осадков оксидов цинка и меди, отличающийся тем, что водно-аммиачный раствор, содержащий 4-10% аммиака, перед отгонкой подвергают нанофильтрации через щелочеустойчивую мембрану при концентрировании в ретанте соединений цинка и меди и удалении части аммиака в пермеат.
2. Способ по п. 1, отличающийся тем, что раствор перед нанофильтрацией разбавляют водой.
3. Способ по п. 1 или 2, отличающийся тем, что обработке подвергают водно-аммиачный раствор из мельницы мокрого помола, кучного или чанового выщелачивания.
Способ выделения оксидов цинка и меди из водно-аммиачных растворов | 1990 |
|
SU1712433A1 |
WO 2012068621 A1, 31.05.2012 | |||
WO 9848066 A1, 29.10.1998 | |||
AU 2013220926 A1, 18.09.2014 | |||
Факельная установка (варианты) | 2023 |
|
RU2814993C1 |
CN 101538648 A, 23.09.2009. |
Авторы
Даты
2017-06-27—Публикация
2016-08-30—Подача