Изобретение относится к области получения постоянных магнитов с мелкозернистой структурой из сплава, например, на основе неодим-железо-бор (Nd-Fe-B) или празеодим-железо-бор (Pr-Fe-B).
Известно, что магнитные свойства магнитов, например Nd-Fe-B, Pr-Fe-B, (коэрцитивная сила и остаточная индукция) могут быть заметно повышены путем измельчения зерна до нанокристаллического (с размером зерен менее 100 нм) или ультрамелкозернистого размера (с размером зерен менее 1 мкм).
В связи с этим используется, например, метод быстрой закалки Pr(Nd)-Fe-B, в результате которой в сплаве формируется нанокристаллическая структура с размером зерен менее 100 нм [Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E., J. Appl. Phys., 1984, vol. 55, No. 6, P. 2078].
Недостатком этой технологии является то, что сплав получается в виде тонких лент или порошков и требуется введение сложной дополнительной операции горячего компактирования и деформации порошков в вакууме.
В качестве ближайшего аналога принят способ получения постоянных магнитов из сплава на основе неодима, железа и бора, включающий заливку расплава в литейную форму и его охлаждение (RU 2461441 С2, 20.09.2012).
Недостатком данного способа является то, что сплав получают в виде достаточно крупных кусочков неправильной формы, устройство вторичного охлаждения с дробильным приспособлением имеет сложную конструкцию.
Задача, на решение которой направлено изобретение, заключается в получении слитка на основе неодим-железо-бор (Nd-Fe-B) или празеодим-железо-бор (Pr-Fe-B) с ультрамелкозернистыми размерами зерен (не более 1 мкм) без дополнительных технологических переделов.
Поставленная задача достигается тем, что способ получения постоянных магнитов толщиной не более 40 мм из сплава на основе неодима, железа, бора включает заливку расплава в литейную форму и его кристаллизацию, при этом расплав подвергают объемной кристаллизации при перемешивании и скорости охлаждения не менее 200°С/мин.
Микроструктура существенно влияет на магнитные характеристики литых постоянных магнитов. При равном химическом составе магнитные параметры значительно возрастают в образцах с ультрамелкозернистой структурой по сравнению с равноосной. Производство отливок с ультрамелкозернистой структурой из магнитотвердых сплавов связано с большими трудностями [Сидоров Е.В. Отливки магнитов с монокристаллической и столбчатой структурами. Теория и практика изготовления. - Владимир, 2007, 164 с.].
Тем не менее создание ультрамелкозернистой структуры в слитке возможно при организации объемной кристаллизации слитка.
Объемная кристаллизация теоретически возможна в однородном температурном поле во всем объеме расплава, залитого в литейную форму [Баландин Г.Ф. Основы теории формирования отливки. В 2-х частях. Ч. II. Формирование макроскопического строения отливки. Учебное пособие для машиностроительных вузов по специальности «Машины и технология литейного производства». - М.: Машиностроение, 1979. С. 118].
В реальности объемную кристаллизацию осуществить нельзя. Можно только приблизиться с определенной точностью к условиям объемной кристаллизации путем уменьшения толщины охлаждаемого расплава и увеличения интенсивности перемешивания кристаллизующегося расплава, что достигается при разливке сплава в литейную форму. При этом, когда отставание процесса кристаллизации в центре незначительно по сравнению с его ходом у поверхности формы, можно принять, что процесс близок к объемному.
Скорость затвердевания, Uз, отливки отражает влияние ее толщины, l0 [там же, с. 31]. В то же время скорость затвердевания прямо пропорциональна скорости, S, охлаждения слитка. Поэтому была экспериментально определена связь между толщиной, скоростью охлаждения и характеристикой строения отливки.
На фиг. 1 показана зависимость скорости, S, охлаждения расплава от толщины, l0, слоя расплава в литейной форме; на фиг. 2 - структура получаемого сплава при различных скоростях охлаждения слитка.
Из полученных результатов следует, что при скорости охлаждения слитка 200 град/мин и более слиток состоит из зерен с размерами не более 1 мкм, что достигается при толщине слитка до 40 мм.
Таким образом, при изготовлении сплава на основе неодим-железо-бор (Nd-Fe-B) за счет организации объемной кристаллизации в слитке образуется ультрамелкозернистая структура с размерами зерна менее 1 мкм, что достигается при скорости охлаждения слитка не менее 200 град/мин и при толщине слитка не более 40 мм.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОСТОЯННЫХ МАГНИТОВ ИЗ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ НЕОДИМ-ЖЕЛЕЗО-БОР ИЛИ ПРАЗЕОДИМ-ЖЕЛЕЗО-БОР | 2006 |
|
RU2337975C2 |
МАТЕРИАЛ ДЛЯ РЕДКОЗЕМЕЛЬНЫХ ПОСТОЯННЫХ МАГНИТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2000 |
|
RU2174261C1 |
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОТВЕРДОГО МАТЕРИАЛА | 2015 |
|
RU2596563C1 |
МАГНИТНЫЙ МАТЕРИАЛ ДЛЯ ПОСТОЯННЫХ МАГНИТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1998 |
|
RU2136068C1 |
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОЙ ЛИГАТУРЫ НЕОДИМ-ЖЕЛЕЗО ДЛЯ ПОСТОЯННЫХ МАГНИТОВ НЕОДИМ-ЖЕЛЕЗО-БОР | 2015 |
|
RU2626841C2 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2012 |
|
RU2500049C1 |
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ АНИЗОТРОПНЫХ МАГНИТОПЛАСТОВ | 2005 |
|
RU2286230C1 |
Шихта для получения термостабильных магнитных сплавов с редкоземельными металлами на основе системы Nd-Fe-B | 2018 |
|
RU2690867C1 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2007 |
|
RU2368969C2 |
ЛИГАТУРА ДЛЯ ПОЛУЧЕНИЯ СПЛАВОВ ДЛЯ ПОСТОЯННЫХ МАГНИТОВ | 1989 |
|
SU1681559A1 |
Изобретение относится к получению литьем постоянных магнитов толщиной не более 40 мм из сплава на основе неодим-железо-бор (Nd-Fe-B) или празеодим-железо-бор (Pr-Fe-B). Способ включает заливку сплава в литейную форму и его объемную кристаллизацию при скорости охлаждения не менее 200 град/мин. За счет объемной кристаллизации получают слиток с ультрамелкозернистой структурой с размерами зерна менее 1 мкм без использования дополнительных технологических переделов. 2 ил.
Способ получения постоянных магнитов толщиной не более 40 мм из слава на основе неодим-железо-бора, включающий заливку расплава в литейную форму и его кристаллизацию, отличающийся тем, что расплав подвергают объемной кристаллизации при перемешивании и скорости охлаждения не менее 200°С/мин.
УСТРОЙСТВО ВТОРИЧНОГО ОХЛАЖДЕНИЯ ЛИТЫХ ТОНКИХ ЛЕНТ ИЗ СПЛАВА НА ОСНОВЕ НЕОДИМА, ЖЕЛЕЗА И БОРА И УСТРОЙСТВО ДЛЯ ЛИТЬЯ ТОНКИХ ЛЕНТ ИЗ СПЛАВА НА ОСНОВЕ НЕОДИМА, ЖЕЛЕЗА И БОРА | 2008 |
|
RU2461441C2 |
Способ получения литых многополюсных магнитов и устройство для его осуществления | 1980 |
|
SU954170A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОСТОЯННЫХ МАГНИТОВ ИЗ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ НЕОДИМ-ЖЕЛЕЗО-БОР ИЛИ ПРАЗЕОДИМ-ЖЕЛЕЗО-БОР | 2006 |
|
RU2337975C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ОТЛИВОК МЕТОДОМ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ ИЗ ЗАДАННОЙ ТОЧКИ РАСПЛАВА К ПЕРИФЕРИИ ОТЛИВКИ | 2008 |
|
RU2376108C1 |
Авторы
Даты
2017-06-27—Публикация
2015-12-10—Подача