Изобретение относится к гидродинамике, измерительной технике, лабораторным установкам, судостроению и может быть использовано для определения осевого присоединенного момента инерции тела в виде корпуса модели судна, плавучих средств и сооружений симметричной формы при их реверсивно-симметричном вращении вокруг собственной неподвижной вертикальной оси с применением программных движений при неизвестном гидродинамическом сопротивлении. Рекомендуется для использования в судостроении на этапах проектирования корпусов судов.
Известен способ определения присоединенного момента инерции самоходного плавсредства (авторское свидетельство СССР №1064176, МКП G01M 10/00, дата приоритета 04.01.1983, опубл. 30.12.1983, Бюл. №48), заключающийся в нахождении разности между моментом инерции плавсредства в жидкости и его собственным моментом инерции, где момент инерции плавсредства в жидкости определяют как отношение момента тяги движителей относительно центра масс плавсредства к угловому ускорению, для чего измеряют тягу движителей при переложенных на борт рулевых устройствах, удерживая плавсредство связью от продольных перемещений с одновременным изменением положения точки закрепления упомянутой связи для исключения боковых перемещений, а также измеряют плечо тяги движителей относительно центра масс, после чего производят освобождение плавсредства от упомянутой связи и измеряют его угловое ускорение. Недостатком данного способа является невысокая точность и производительность, связанные с тем, что необходимо выполнять достаточно сложное натурное испытание, слабо учитывается влияние гидродинамического момента сопротивления и работы движителей на результат измерения.
Известно устройство для определения присоединенных масс, моментов инерции и демпфирования моделей судов методами их свободных колебаний в жидкости (патент РФ №2425343, МКП G01M 1/16, дата приоритета 10.12.2009, опубл. 27.07.2011, Бюл. №21), в котором методом свободных колебаний в продольных и поперечных плоскостях на воздухе определяют положение центра масс и собственные моменты инерции относительно вертикальной, горизонтальной и поперечной осей модели, подвешенной на бифилярном подвесе, с возможностью изменения длины подвеса и расстояния между бифилярами, находящейся в гидролотке и уравновешенной по ватерлинию, снабженной дополнительным грузом с обеспечением сохранения осадки, с произведенной статической тарировкой модели в воде, с определением коэффициентов ее условной остойчивости, с отклонением модели и записью ее свободных затухающих колебаний. Присоединенные моменты инерции вычисляют известными методами по суммарным моментам инерции и демпфирования модели за вычетом соответственных значений, полученных при испытании модели в воздухе. Недостатком данного устройства является его невысокая точность и трудоемкость, связанные с необходимостью точной тарировки модели, а также описаны только опыты, связанные с измерением присоединенного момента инерции относительно продольной и поперечной осей модели.
Наиболее близким к изобретению является способ определения тензора инерции тела (патент РФ №2436055, МКП G01M 1/10, дата приоритета 04.05.2009, опубл. 10.12.2011, Бюл. №34), заключающийся в том, что тело размещают во внутренней рамке двухосного двухрамочного карданова подвеса, имеющего цилиндрическую форму, горизонтальную подвижную собственную ось вращения и внешнюю рамку с вертикальной осью прецессии, сообщают ему управляемым электродвигателем и упругим закручиваемым элементом реверсивно-симметричное двухосное сферическое движение, состоящее из непрограммного сферического замедленного вращения по углам прецессии и собственного вращения, синхронных и прямопропорциональных между собой и обратного ускоренного, симметричного по отношению к замедленному программному движению в обратном направлении по программе, построенной по текущим замерам тормозного движения. На таком реверсивном симметричном сферическом движении измеряют расходы электроэнергии на десяти интервалах угла собственного поворота. По двадцати значениям расходов энергии с вычетом тепловых омических расходов в обмотках вычисляют пять осевых моментов инерции относительно пяти положений в теле мгновенной оси вращения. Шестой осевой момент инерции определяют отдельно на вращательном движении тела вокруг вертикальной оси прецессии при отключенном собственном вращении с замерами расхода энергии. Недостатком данного способа является то, что он позволяет нераздельно определять собственные моменты инерции вместе с присоединенными моментами инерции погруженного в жидкость тела.
Наиболее близким к изобретению устройством является устройство для определения тензора инерции тела (патент РФ №2436055, МКП G01M 1/10, дата приоритета 04.05.2009, опубл. 10.12.2011, Бюл. №34), содержащее двухосный карданов подвес, имеющий внешнюю рамку с валом и внутреннюю рамку-платформу с валом с возможностью размещения в ней тела, автоматизированного электропривода в виде электродвигателя и зубчатого передаточного механизма с переключающими муфтами, внутренняя рамка выполнена в виде полого осесимметричного цилиндра, электродвигатель содержит упругий элемент в виде закручиваемого торсиона, составляющего с ним гибридный двигатель, а передаточный зубчатый механизм состоит из конического колеса, сцепленного с цилиндром, соосного с внутренним валом, и неподвижного конического колеса, соосного с внешней рамкой с возможностью отключения его электромуфтами посредством продольного перемещения с одновременным отключением вращения внутренней рамки. Недостатком устройства является то, что оно не позволяет производить измерение присоединенных моментов инерции для тела, помещенного в жидкость.
Решается задача расширения функциональных возможностей способа и устройства для определения присоединенных моментов инерции тел на системах программного управления, способных исполнять программные неравномерные симметричные угловые движения вокруг неподвижной оси тела, проходящей через его центр масс.
Сущность изобретения заключается в том, что телу в виде корпуса судна, погруженному в опытовый бассейн с жидкостью по ватерлинию или с заданной осадкой, с установленным на вертикальной оси корпуса судна управляемым электродвигателем (со встроенным энкодером) с осесимметричным маховиком, упругим закручиваемым стержнем сообщают полупрограммное неравномерное реверсивно-симметричное вращательное движение вокруг вертикальной оси, отсчитываемое от произвольно выбранного углового положения, содержащее этап произвольного существенно непрограммного замедленного замеряемого вращения на ограниченном угловом интервале и этап ускоренного обратного симметричного первому этапу управляемого вращения в обратном направлении, построенного по замерам угла поворота при тормозном движении. На таком реверсивном симметричном движении замеряют работу крутящего момента сил, создаваемого электродвигателем с маховиком на обратном вращении через потребляемую электроэнергию с учетом обнуления разности работ гидродинамического момента, учетом расхода энергии на магнитные, электрические и механические потери в двигателе, оцененные по известному коэффициенту полезного действия двигателя, с учетом момента инерции тела, с использованием рубежных значений модулей вектора угловой скорости маховика и тела, с использованием рубежных положений тела определяют присоединенный момент инерции тела.
Сущность заключается в том, что в устройстве тело в виде корпуса судна закреплено через центр масс корпуса с жестким стержнем с рамкой в опытовом бассейне, жесткий стержень сцеплен с упругим стержнем, состоящим из двух частей, одна часть закреплена на рамке и на опоре, а вторая на жестком стержне и на дне опытового бассейна, при этом электропривод, закрепленный на жестком стержне, выполнен в виде электродвигателя с энкодером и осесимметричным маховиком, расположенным на валу двигателя соосным с вертикальной осью вращения корпуса судна, датчик угол-код закреплен на опоре, вал датчика угол-код сцеплен с рамкой.
Идентификация присоединенного момента инерции тела в виде корпуса судна осуществляется следующим образом. Корпус судна, симметричный относительно плоскости xOz, закреплен в опытовом бассейне через продетый через центр масс корпуса судна жесткий стержень, соосно с вертикальной осью вращения корпуса судна. Основным двигателем является упругое устройство. Ось электродвигателя с маховиком расположена на малом расстоянии l от оси Oz. Рассматривается плоское вращательное движение корпуса судна в горизонтальной плоскости Оху, где
Кинетические энергии корпуса Т1, маховика T2 и жидкости T3:
Кинетическая энергия системы Т: корпуса судна, маховика и жидкости:
Уравнение (4) в матричной форме:
при вектор-столбце угловых скоростей
К механической системе приложена пара сил, характеризуемая моментом упругих сил закрученного упругого стержня М1, мощность которого P1; крутящим моментом электродвигателя М2, мощность которого P2; приложен гидродинамический диссипативный момент М3, которые будем считать приведенными к углу ϕ с мощностью Р3. Маломощный электродвигатель выполняет лишь корректирующую функцию со сравнительно малым потреблением электроэнергии и, соответственно, с весьма малыми потерями энергии в электродвигателе, которыми можно пренебречь или учесть приближенно.
Общая мощность системы приложенных моментов пар сил:
Отсюда находим обобщенные моменты в виде коэффициентов при ω1z и Ω. Вектор-столбец обобщенных моментов:
Считаем, что корпус судна с упругим стержнем, работающим на кручение, закручивается вокруг вертикальной оси Oz на отрицательный угол ϕ0=-α и отпускается без начальной угловой скорости. Наблюдается свободное разгонно-тормозное движение, состоящее из ускоренного движения на интервале времени
Работа пар сил на угловом интервале
где
По теореме об изменении кинетической энергии в дифференциальной форме имеем:
Подставляя выражение (4) и (5) в (7), учитывая, что
или
Датчик угол-код замеряет множество узловых значений угла поворота и угловой скорости корпуса судна, по которым компьютерная программа методом точечной аппроксимации определяет кинематическое уравнение вращения вида ϕ(t)=ƒ(t) на интервале
В целом уравнение симметричного возвратного тормозного-разгонного движения имеет вид:
По данным текущего расхода электроэнергии на интервале
где ,
Здесь
Вычитая почленно уравнение (11) из (10), полагая, что работы диссипативных моментов на двух симметричных движениях совпадают и прямое движение выполняется при отключенном электродвигателе, получим уравнение, не содержащее диссипативных работ:
Подставляя уравнение (4) в (12) с учетом угловых положений, получим:
Здесь Ωβ - угловая скорость маховика в положении ϕ=β.
Обозначим
В случае если потери в системе малы и если движение осуществляется в основном за счет начальной кинетической энергии и энергии упругого стержня, а двигатель обеспечивает лишь корректирующую роль - поддерживает симметричность реверсивного движения, то с достаточной точностью можно полагать ε=0. В общем случае величина ε может быть аналитически оценена или замерена на испытаниях типовых образцов.
Также механическую работу можно определить при известном коэффициенте полезного действия η электродвигателя:
Применяя формулу (14) либо (15) из (13) получаем расчетную формулу для присоединенного момента инерции λ66 относительно вертикальной оси вращения корпуса судна:
Эксперимент желательно в точности повторить несколько раз, совершив n одинаковых симметричных разгонно-тормозных колебаний и замерив затраченную электроэнергию
В случае проведения n опытов на различных угловых интервалах, получено i ближних значений
Таким образом, заявляемый способ имеет высокую производительность, высокую точность в связи с тем, что исключает влияние диссипативных сил в виде гидродинамического момента на результат измерения и не требует движителей, контактирующих с жидкостью, не имеет необходимости корректировать движение корпуса судна в процессе измерения или прерывать эксперимент и позволяет определять присоединенные моменты инерции тел в виде корпусов судов вокруг вертикальной оси вращения, что является расширением функциональных возможностей.
Сущность предлагаемого изобретения поясняют Фиг. 1-3. где
На Фиг. 1 изображено устройство для осуществления способа, где
- тело в виде корпуса судна 1,
- электродвигатель 2,
- массивный маховик 3,
- жесткий стержень 4,
- опора 5,
- упругий стержень 6,
- опытовый бассейн 7,
- рамка 8,
- датчик угол-код 9.
Тело в виде корпуса судна 1 помещают в опытовый бассейн 7. При этом корпус судна 1 с центром масс О, через который корпус судна 1 закреплен с жестким стержнем 4 и с электродвигателем 2 со встроенным энкодером, массивный маховик 3 закреплен на валу электродвигателя 2, жесткий стержень 4 сцеплен с упругим стержнем 6, закрепленным на опоре 5 одним концом в точке А, а другим в точке В, рамка 8 сцеплена с жестким стержнем 4 и упругим стержнем 6 и соединена с датчиком угол-код 9, прикрепленным к опоре 5.
Такое устройство обеспечивает выполнение реверсивно-симметричных вращений тела вокруг вертикальной оси на выбранном угловом интервале, с одновременными замерами его угловой скорости, углового положения и угловой скорости маховика, необходимыми для осуществления способа.
В изобретении применяется энергоемкий упругий стержень 6 с возможностью предварительной начальной зарядкой его упругой потенциальной энергией, и электродвигатель 2 с функцией корректировки реверсивно-симметричного вращения с малым расходом энергии. Упругий стержень 6 и электродвигатель 2 составляют гибридный двигатель, маховик 3 соединен с ротором электродвигателя 2 через редуктор, вал датчика угол-код 9 соосно сцеплен с рамкой 8. Рамка 8 способна вращаться на неполный угол, ограниченный закреплением с опорой 5 датчика угол-код 9.
На Фиг. 2 представлены корпус судна 1, электродвигатель 2 с маховиком 3, жесткий стержень 4, центр масс корпуса судна О.
На Фиг. 3 корпус судна 1, электродвигатель 2, угол рыскания корпуса судна ϕ, угол поворота маховика 3 относительно корпуса судна ψ, орт
Устройство работает следующим образом. Упругий стержень 6, закрепленный на опоре 5 и на дне бассейна 7, закрученный вокруг вертикальной оси на начальный угол, задает непрограммное неравномерное вращение вокруг неподвижной точки О жесткому стержню 4 с закрепленным на нем корпусом судна 1 через его центр масс, рамке 8 и электродвигателю 2 со встроенным энкодером и маховиком 3. Симметричность программного движения обеспечена гибридным двигателем, состоящим из электродвигателя 2 с маховиком 3, корректирующим движение и упругого стержня 6, работающего на кручение. Текущее измерение угла поворота и угловой скорости корпуса судна 1 осуществляет датчик угол-код 9, закрепленный с опорой 5, аналитическую обработку результатов выполняет компьютер. При этом встроенным энкодером на обратном движении производится непосредственное измерение угловой скорости вращения маховика 3. Управление двигателем осуществляется автоматической системой программного управления. В результате устройство обеспечивает корпусу судна 1 требуемое программное движение.
Таким образом, предлагаемое изобретение позволяет решить задачу расширения функциональных возможностей в судостроении. Это достигается посредством применения полупрограммных движений и модифицированной конструкции.
Изобретение относится к области гидродинамики, измерительной технике, лабораторным установкам, судостроению. Способ идентификации присоединенного момента инерции тела состоит в том, что телу активным моментом сил сообщают реверсивно-симметричное прецессионное вращение вокруг вертикальной оси, замеряют разности работ активных моментов сил через разности потребляемой электроэнергии, по которым аналитически с применением уравнения изменения энергии, использования рубежных положений и модулей вектора угловой скорости определяют моменты инерции тела, при этом тело в виде корпуса судна погружают в опытовый бассейн по ватерлинию или с заданной осадкой и сообщают одно или несколько реверсивно-симметричных вращений моментом упругих сил вокруг вертикальной оси тела, отсчитываемых от произвольно выбранного углового положения, содержащих этап свободного замедленного замеряемого вращения и этап управляемого обратного симметричного вращения с сообщением крутящего момента сил в соответствующих угловых положениях, замеряют работу крутящего момента сил на обратном вращении на ограниченном угловом интервале через потребляемую электроэнергию, с использованием двух рубежных значений модулей вектора угловой скорости определяют присоединенный момент инерции тела. Устройство для определения присоединенного момента инерции тела содержит автоматизированный электропривод с упругим элементом в виде закручиваемого торсиона, при этом тело в виде корпуса судна закреплено через его центр масс с жестким стержнем с рамкой в опытовом бассейне, при этом упругий элемент в виде упругого стержня состоит из двух частей, одна из частей закреплена на рамке и на опоре, а вторая на жестком стержне и на дне опытового бассейна, при этом на жестком стержне закреплен электропривод и рамка, с которой сцеплен вал датчика угол-код, закрепленного на опоре, а электропривод выполнен в виде электродвигателя с энкодером и осесимметричным массивным маховиком, расположенным на валу двигателя соосно с вертикальной осью вращения корпуса судна. Технический результат заключается в расширении функциональных возможностей при идентификации присоединенных моментов инерции тел корабельной формы на системах программного управления. 2 н.п. ф-лы, 3 ил.
1. Способ идентификации присоединенного момента инерции тела, заключающийся в том, что телу активным моментом сил сообщают реверсивно-симметричное прецессионное вращение вокруг вертикальной оси, замеряют разности работ активных моментов сил через разности потребляемой электроэнергии, по которым аналитически с применением уравнения изменения энергии, использования рубежных положений и модулей вектора угловой скорости определяют моменты инерции тела, отличающийся тем, что тело в виде корпуса судна погружают в опытовый бассейн по ватерлинию или с заданной осадкой и сообщают одно или несколько реверсивно-симметричных вращений моментом упругих сил вокруг вертикальной оси тела, отсчитываемых от произвольно выбранного углового положения, содержащих этап свободного замедленного замеряемого вращения и этап управляемого обратного симметричного вращения с сообщением крутящего момента сил в соответствующих угловых положениях, замеряют работу крутящего момента сил на обратном вращении на ограниченном угловом интервале через потребляемую электроэнергию с учетом обнуления разности работ гидродинамического момента, с учетом расхода энергии на магнитные, электрические и механические потери, с учетом момента инерции тела, с использованием двух рубежных значений модулей вектора угловой скорости определяют присоединенный момент инерции тела.
2. Устройство для определения присоединенного момента инерции тела, содержащее автоматизированный электропривод с упругим элементом в виде закручиваемого торсиона, отличающееся тем, что тело в виде корпуса судна закреплено через его центр масс с жестким стержнем с рамкой в опытовом бассейне, при этом упругий элемент в виде упругого стержня состоит из двух частей, одна из частей закреплена на рамке и на опоре, а вторая на жестком стержне и на дне опытового бассейна, при этом на жестком стержне закреплен электропривод и рамка, с которой сцеплен вал датчика угол-код, закрепленного на опоре, а электропривод выполнен в виде электродвигателя с энкодером и осесимметричным массивным маховиком, расположенным на валу двигателя соосно с вертикальной осью вращения корпуса судна.
RU 2009117025 A 10.11.2010 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ОСЕВОГО МОМЕНТА ИНЕРЦИИ ТЕЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2115904C1 |
JP 2000205996 A 28.07.2000. |
Авторы
Даты
2017-08-02—Публикация
2016-10-13—Подача