Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) методом суспензионной полимеризации этилена в углеводородном растворителе с использованием нанесенного катализатора циглеровского типа, содержащего в своем составе соединение переходного металла на магнийсодержащем носителе, при повышенных температурах полимеризации.
Сверхвысокомолекулярный полиэтилен СВМПЭ (с молекулярной массой более 1.5 млн. г/моль) является уникальным конструкционным полимером, резко отличающимся по своим физико-механическим свойствам от обычных марок полиэтилена. Он обладает высокой ударной стойкостью и прочностью, повышенной стойкостью к абразивному износу, морозостойкостью, химической инертностью и коррозионной стойкостью, низким коэффициентом трения, способностью к волокнообразованию с получением сверхпрочных нитей и т.д. Поэтому данный полимерный материал наиболее востребован для применения в экстремальных условиях эксплуатации, например при низких температурах, высоких ударных нагрузках (горнорудная промышленность, средства бронезащиты) и во многих других областях техники.
СВМПЭ производится методом суспензионной полимеризации этилена в среде углеводородного растворителя с использованием современных нанесенных катализаторов циглеровского типа, в частности титанмагниевых катализаторов (ТМК), в присутствии сокатализатора - триалкила алюминия. Конечным продуктом процесса полимеризации является порошок СВМПЭ. В зависимости от области применения этого полимера и способов его переработки в конечные изделия необходимо производить различные марки порошков СВМПЭ, отличающихся молекулярной массой (от 1 до 10 млн. г/моль), морфологией частиц порошка (размером частиц и насыпной плотностью порошка) и надмолекулярной структурой. Для большинства областей применения сверхвысокомолекулярного полиэтилена требуются порошки со средним размером частиц в области 100-200 мкм, с узким распределением частиц по размерам и высокой насыпной плотностью (350-450 г/л). Для этого необходимо использовать нанесенные катализаторы, имеющие средний размер частиц менее 8 мкм, узкое распределение частиц по размеру и оптимальную пористость.
Следует отметить, что ограничением титанмагниевого катализатора в регулировании молекулярной массы СВМПЭ является то, что полимеры с молекулярной массой более 2⋅106 г/моль (характеристическая вязкость, определенная в декалине при 135°C более 10 дл/г) можно получать только при полимеризации этилена при пониженных температурах ≤60°C, что снижает производительность процесса полимеризации.
Известен способ приготовления нанесенного титанмагниевого катализатора, содержащего тетрахлорид титана на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения (МОС) состава MgPh2⋅nMgCl2⋅mR2O, где: Ph = фенил, R2O = простой эфир с R = бутил или i-амил, n=0.37-0.7, m=1-2, с четыреххлористым углеродом с последующей обработкой полученного магнийсодержащего носителя тетрахлоридом титана [Пат. РФ 2064836, B01J 31/38, 37/00, 10.08.1996]. Этот метод позволяет получать катализатор с регулируемым размером частиц в области от 30 до 3 мкм. Однако для получения катализатора с размером частиц в области 7-3 мкм, требуемым для производства СВМПЭ, взаимодействие МОС с CCl4 необходимо проводить при низких температурах (от -5°C до -15°C); при этом процесс взаимодействия МОС с CCl4 становится труднорегулируемым, особенно при увеличении объемов аппаратуры и количества получаемого катализатора.
Известен способ приготовления нанесенного титанмагниевого катализатора [Пат. РФ 2257263, B01J 37/00, 31/38, C08F 10/00, 27.07.2005], в котором магнийсодержащий носитель получают взаимодействием раствора МОС состава MgPh2⋅nMgCl2⋅mR2O, где: Ph = фенил, R2O = простой эфир с R = бутил или i-амил, n=0.37-0.7, m=1-2, с алкихлорсиланом RxSiCl4-x, где: R = алкил, фенил, х=1, 2. Активность этого катализатора при температурах полимеризации ≤60°C при получении СВМПЭ с молекулярной массой более 2 млн. г/моль недостаточно высока.
Ближайшим решением поставленной в настоящей заявке задачи (прототип) является способ получения сверхвысокомолекулярного полиэтилена, описанный в [Пат. РФ 2303608, C08F 10/00, 27.07.2007]. СВМПЭ получают в режиме суспензии в среде углеводородного растворителя при температурах 40-70°С с использованием нанесенного катализатора, содержащего соединение титана на магнийсодержащем носителе в сочетании с алюминийорганическим сокатализатором. Носитель для этого катализатора получают взаимодействием раствора магнийорганического соединения состава Mg(C6H5)2n MgCl2 mR2O, где: n=0.37-0.7, m=2, R2O - простой эфир c R=i-Am, n-Bu с соединением кремния, в качестве соединения кремния используют продукт, полученный взаимодействием соединения состава R'kSiCl4-k с тетраэтоксидом кремния Si(OR)4, где: R1 = алкил или фенил; k=0, 1, при мольном соотношении R'xSiCl4-x/Si(OR)4=2-4 при температуре 15-45°С и при соотношении Si/Mg = 1-2.5.
Предлагаемый способ обеспечивает получение полиэтилена с высокой активностью (100-1000 кг ПЭ/г Ti час) и с высоким насыпным весом (0.40-0.45 г/см3) и улучшенной морфологией.
Основным недостатком перечисленных выше катализаторов на основе соединений титана является то, что в случае их использования для получения полиэтилена с молекулярной массой более 2 млн. необходимы низкие температуры полимеризации 50-65°С, что снижает производительность процесса получения СВМПЭ.
Изобретение решает задачу получения сверхвысокомолекулярного полиэтилена методом суспензионной полимеризации этилена при повышенных температурах полимеризации (>70°С).
Технический результат - высокий выход, улучшенная морфология и оптимальный диапазон молекулярных масс, которые необходимы для получения изделий из СВМПЭ.
Задача решается тем, что СВМПЭ получают с использованием нового нанесенного катализатора, содержащего в качестве активного компонента смесь соединений ванадия и титана на магнийсодержащем носителе.
Для достижения высоких выходов и улучшенной морфологии полимера (высокая насыпная плотность, узкое распределение частиц по размеру (узкий SPAN) и оптимальный средний размер частиц полимера от 50 до 150 мкм) используют катализатор, содержащий соединение переходного металла на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения состава: Mg(C6H5)2⋅nMgCl2 mR2O, где: n=0.37-0.7, m=2, R20 - простой эфир с R = изоамил (i-Am), н-бутил (n-Bu), с продуктом взаимодействия алкилхлорсилана состава: R'kSiCl4-k, где: R' - алкил или фенил, к=0, 1, 2 и тетраалкоксида кремния Si(OEt)4, в котором мольное соотношение R'kSiCl4-k, / Si(OEt)4 = 50-2, a Si/Mg = 1-2.5, а в качестве соединения переходного металла используют соединения титана (TiCl4, Ti(OEt)2Cl2) и ванадия (VCl4, VOCl3) в количествах, которые обеспечивают мольное соотношение V/Ti в конечном катализаторе от 0.5 до 10.
Задача решается также процессом полимеризации этилена с использованием этих титанванадиймангниевых катализаторов (ТВМК) с получением сверхвысокомолекулярного полиэтилена (СВМПЭ), который проводят в режиме суспензии в сочетании с алюминийорганическим сокатализатором (ТЭА, ТИБА) при повышенных температурах полимеризации >70°С, предпочтительно 70-90°С, в среде алифатического углеводородного разбавителя, например гептан, гексан, изопентан, при давлении этилена ≥1 атм.
Предлагаемый способ обеспечивает получение полиэтилена с высоким выходом (>500 кг ПЭ/г Me⋅ч), требуемой морфологией (размер частиц 4-7 мкм, узкое распределение частиц по размеру и насыпная плотность >0.35 г/см3) и с высокой молекулярной массой (2.5-8⋅106) при температурах полимеризации выше 70°С.
Основное преимущество нового катализатора (ТВМК) заключается в возможности использования высоких температур полимеризации при получении СВМПЭ, что позволяет увеличить производительность реактора (возможность стабильно вести процесс полимеризации при большом поглощении этилена за счет более легкого отвода тепла из-за высокой разницы температуры между реактором и охлаждающей системой).
Сущность изобретения иллюстрируется следующими примерами.
Пример 1.
А). Приготовление раствора магнийорганического соединения.
В стеклянный реактор объемом 1 л, оборудованный мешалкой и термостатирующим устройством, загружают 29.2 г порошкообразного магния (1.2 моль) в 450 мл хлорбензола (4.4 моль), 203 мл дибутилового эфира (1.2 моль) и активирующий агент, представляющего собой раствор 0.05 г йода в 3 мл хлористого бутила. Реакцию проводят в атмосфере инертного газа (азот, аргон) при температуре от 80 до 100°С в течение 10 ч. По окончании реакции полученную реакционную смесь отстаивают и отделяют жидкую фазу от осадка. Жидкая фаза представляет собой раствор в хлорбензоле магнийорганического соединения состава MgPh2⋅0.49MgCl2⋅2(Bu)2O с концентрацией 1.0 моль Mg/л.
(Б). Синтез носителя.
200 мл полученного раствора (0.2 моль Mg) загружают в реактор с мешалкой и при температуре 15°C в течение 2,3 ч дозируют в реактор раствор смеси PhSiCl3 (51 мл) с Si(OEt)4 (4.5 мл) при мольном соотношении 18:1, (Si(OEt)4/Mg=0.1, PhSiCl3/Mg=2.0). Затем нагревают реакционную смесь до 60°C в течение 30 мин и выдерживают при этой температуре 1 ч. Удаляют маточный раствор и промывают образовавшийся осадок гептаном 4 раза по 250 мл при температуре 20°C. Получают 33 г порошкообразного магнийсодержащего носителя в виде суспензии в гептане.
К полученной суспензии магнийсодержащего продукта в 150 мл гептана добавляют 354 мл 0.73 М раствора диэтилалюминийхлорида в гептане (AlEt2Cl/Mg=1.5), нагревают реакционную смесь до 40°C и выдерживают при перемешивании в течение 2 ч, затем твердый осадок отстаивают и промывают гептаном при температуре 50°C 5 раз по 200 мл. Получают MgCl2 - содержащий носитель со средним размером частиц 5.5 мкм.
(В) Синтез катализатора.
К суспензии носителя в 150 мл гептана при комнатной температуре добавляют 3.3 мл тетрахлорида титана (Ti/Mg=0.13 (мол.)) и 5.6 мл раствора тетрахлорида ванадия в четыреххлористом углероде с содержанием ванадия 0.034 г/мл (V/Mg = 0.016 (мол.)). Полученную суспензию нагревают до 60°C и выдерживают при перемешивании в течение 1 ч, затем твердый осадок отстаивают и промывают гептаном при температуре 50°C 3 раза по 200 мл. Получают нанесенный катализатор с содержанием титана 0.95 мас. % и ванадия 0.7 мас. % (V/Ti=0.7 (мол.)), со средним размером частиц 5.6 мкм и с узким распределением частиц по размеру (SPAN=(D90-D10)/D50=0.65).
Полимеризацию этилена проводят в стальном реакторе объемом 0.85 л, оборудованном мешалкой и термостатирующей рубашкой. В качестве растворителя для полимеризации используют гептан (250 мл) и сокатализатор - триэтилалюминий (AlEt3) с концентрацией 1.8 ммоль/л. Полимеризацию проводят при температуре 70°C, давлении этилена 5 атм в течение 2 ч.
Получают порошок полимера со средним размером частиц 125 мкм, величиной SPAN=0.7, насыпной плотностью 390 г/л и молекулярной массой 3.2 млн г/моль (характеристическая вязкость 3.2 млн г/моль).
Результаты полимеризации приведены в таблице.
Пример 2.
Катализатор получают в условиях примера 1, за исключением того, что вместо TiCl4 используют раствор Ti(OEt)2Cl2 в хлорбензоле (1:1 по объему) и соотношение Ti/Mg=0.09 (мол), реакционная смесь выдерживается при 60°C, промывается 3 раза гептаном при 50°C, а затем вводится раствор тетрахлорида ванадия в четыреххлористом углероде (V/Mg=0.05 (мол)). Получают нанесенный катализатор с содержанием титана 0.5 мас. % и ванадия 1.0 мас. % (V/Ti=1.9 (мол)).
Полимеризацию этилена ведут в условиях примера 1, за исключением того, что концентрация ТЭА равна 1.1 ммоль/л.
Пример 3.
Используют катализатор, полученный в условиях примера 2.
Полимеризацию этилена ведут в условиях примера 2 за исключением того, что температура полимеризации 80°C.
Пример 4.
Катализатор получают в условиях примера 2, за исключением того, что при синтезе катализатора используется соотношение Ti/Mg=0.08 (мол), а V/Mg=0.06 (мол). Катализатор содержит 0.44 мас. % титана и 1.2 мас. % ванадия (V/Ti=2.6 (мол)).
Полимеризацию этилена ведут в условиях примера 2, за исключением того, что концентрация ТЭА равна 2.6 ммоль/л.
Пример 5.
Катализатор получают в условиях примера 4, за исключением того, что вместо четыреххлористого ванадия используют окситрихлорид ванадия (VOCl3). Катализатор содержит 0.4 мас. % титана и 1.2 мас. % ванадия (V/Ti=2.8 (мол)).
Полимеризацию этилена ведут в условиях примера 4.
Пример 6.
Катализатор получают в условиях примера 2, за исключением того, что при синтезе катализатора используется соотношение Ti/Mg=0.072 (мол), a V/Mg=0.082 (мол). Катализатор содержит 0.24 мас. % титана и 1.8 мас. % ванадия.
Полимеризацию этилена ведут в условиях примера 3, за исключением того, что температура полимеризации 90°C.
Пример 7.
Катализатор получают в условиях примера 2, за исключением того, что при синтезе катализатора используется соотношение Ti/Mg=0.053 (мол.), a V/Mg=0.06 (мол). Катализатор содержит 0.18 мас. % титана и 1.8 мас. % ванадия.
Полимеризацию этилена ведут в условиях примера 4.
Примеры 8-10 приведены для сравнения.
Пример 8.
Катализатор получают в условиях примера 1, за исключением того, что вместо смеси соединений ванадия и титана используют только тетрахлорид титана. Катализатор содержит 0.73 мас. % Ti.
Полимеризацию этилена ведут в условиях примера 6, за исключением того, что давление этилена 4 атм.
Пример 9.
Катализатор получают в условиях примера 1, за исключением того, что вместо смеси соединений ванадия и титана используют только VCl4 в количестве, эквивалентном 2% мас. ванадия от веса носителя. Катализатор содержит 2.0 мас. % ванадия.
Полимеризацию этилена ведут в условиях примера 3.
Пример 10.
Катализатор получают в условиях примера 9.
Полимеризацию этилена ведут в условиях примера 6.
Результаты полимеризации по всем примерам приведены в таблице.
Из представленных выше примеров 1-7 видно, что в случае использования титанванадиймагниевых катализаторов удается получить СВМПЭ в широком диапазоне высоких молекулярных масс (от 2.7⋅106 до 7.3⋅106 г/моль) при повышенных температурах полимеризации (≥70°C).
При использовании титанмагниевого катализатора (пример 8), получаемого на аналогичном носителе, при температуре полимеризации 80°C получается СВМПЭ с более низкой молекулярной массой (1.1⋅106 г/моль), а при использовании ванадиймагниевого катализатора при температурах полимеризации 80 и 90°C (примеры 9 и 10) получается СВМПЭ с супервысокой молекулярной массой (более 10⋅106 г/моль), переработка которого в изделия вызывает затруднения.
название | год | авторы | номер документа |
---|---|---|---|
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2007 |
|
RU2346006C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2006 |
|
RU2306178C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2006 |
|
RU2320410C1 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА | 2011 |
|
RU2471552C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА | 2006 |
|
RU2303608C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА И СОПОЛИМЕРОВ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ С УЗКИМ МОЛЕКУЛЯРНО-МАССОВЫМ РАСПРЕДЕЛЕНИЕМ | 2008 |
|
RU2381236C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА И СОПОЛИМЕРОВ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ С ШИРОКИМ МОЛЕКУЛЯРНО-МАССОВЫМ РАСПРЕДЕЛЕНИЕМ | 2007 |
|
RU2356911C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА | 2006 |
|
RU2303605C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ | 2014 |
|
RU2570645C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2004 |
|
RU2257263C1 |
Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) с использованием нанесенного катализатора циглеровского типа, содержащего в своем составе соединение переходного металла на магнийсодержащем носителе. Катализатор для получения сверхвысокомолекулярного полиэтилена - СВМПЭ содержит соединение переходного металла на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения состава: Mg(C6H5)2n MgCl2 mR2O, где: n=0.37-0.7, m=2, R2О - простой эфир с R=i-Am, n-Bu, с продуктом взаимодействия алкилхлорсилана состава: R'kSiCl4-k, где: R' - алкил или фенил, k=0, 1, 2, и тетраалкоксида кремния Si(OEt)4, взятым при мольном соотношении R'kSiCl4-k, / Si(OEt)4 = 50-2. В качестве соединения переходного металла используют смесь соединений титана (TiC4 или Ti(OEt)2Cl2) и ванадия (VCl4, VOCl3). Способ получения сверхвысокомолекулярного полиэтилена СВМПЭ в режиме суспензии в среде углеводородного разбавителя осуществляют при температуре полимеризации выше 70°С в присутствии алюминийорганического сокатализатора с использованием указанного катализатора. При этом получают сверхвысокомолекулярный полиэтилен с молекулярной массой в области от 2,5⋅106 до 8⋅106 г/моль. Технический результат - использование высоких температур полимеризации, что позволяет увеличить производительность реактора и возможность получения СВМПЭ с требуемой молекулярной массой в области от 2,5⋅106 до 8⋅106 г/моль. 2 н. и 1 з.п. ф-лы, 1 табл., 7 пр.
1. Катализатор для получения сверхвысокомолекулярного полиэтилена - СВМПЭ, содержащий соединение переходного металла на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения состава: Mg(C6H5)2n MgCl2 mR2O, где: n=0.37-0.7, m=2, R2O - простой эфир с R=i-Am, n-Bu, с продуктом взаимодействия алкилхлорсилана состава: R'kSiCl4-k, где: R' - алкил или фенил, k=0, 1, 2 и тетраалкоксида кремния Si(OEt)4, взятым при мольном соотношении R'kSiCl4-k, / Si(OEt)4 = 50-2, отличающийся тем, что в качестве соединения переходного металла используют смесь соединений титана (TiC4 или Ti(OEt)2Cl2) и ванадия (VCl4, VOCl3).
2. Катализатор по п. 1, отличающийся тем, что мольное соотношение V/Ti = 0.5-10.
3. Способ получения сверхвысокомолекулярного полиэтилена СВМПЭ в режиме суспензии в среде углеводородного разбавителя с использованием нанесенного катализатора, содержащего соединение переходного металла на магнийсодержащем носителе, отличающийся тем, что сверхвысокомолекулярный полиэтилен с молекулярной массой в области от 2,5⋅106 до 8⋅106 г/моль получают при температуре полимеризации выше 70°С в присутствии алюминийорганического сокатализатора с использованием катализатора по пп. 1 и 2.
Стабилизатор переменного тока | 1976 |
|
SU608137A1 |
US 4923935 A1, 08.05.1990 | |||
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2007 |
|
RU2346006C1 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА | 2011 |
|
RU2471552C1 |
US 4962167 A1, 09.10.1990. |
Авторы
Даты
2017-08-08—Публикация
2016-06-27—Подача