Предлагаемое изобретение относится к области металлургии, а именно к термической обработке и к способам получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец (Al-Mg-Mn), применяемых для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных поездов, а также для изготовления корпусов автомобилей.
В настоящее время в промышленности сплавы системы Al-Mg-Mn являются самым распространенным конструкционным материалом корпусов катеров, яхт, судов на подводных крыльях, надстроек больших кораблей и судов. Как правило, эти сплавы применяются в виде тонких (толщина 3-8 мм) листов и профилей. Вполне очевидно, что корпус должен сочетать высокую прочность с малым весом. Известно, что для достижения высокой прочности и пластичности необходимо формирование мелкой однородной структуры (размер зерна менее 10 мкм). Также известно, что наличие дисперсных наноразмерных частиц и их гомогенное распределение способствует формированию однородной мелкозернистой структуры и обеспечивает стабильность структуры в листе во время термормеханической обработки (ТМО).
Сплавы системы Al-Mg-Mn содержат частицы Al6Mn, которые в зависимости от ТМО могут иметь различный размер и форму. Стабильность однородной ультрамелкозернистой структуры в Al-Mg-Mn сплавах во время термомеханической обработки обеспечивает наличие дисперсных наночастиц Al6Mn равноосной формы (I. Nikulin, А. Kipelova, S. Malopheyev, R. Kaibyshev, Acta Mater. 60 (2012) 487-4 97; Nikulin I, Kipelova A, Malopheyev S, Kaibyshev R. Mater Trans 52 (2011) 882).
Известен способ получения листов из алюминиевого сплава (RU №2042736, публ. от 27.08.1995), включающий горячее прессование литых заготовок при температуре 450-550°С, отжиг при температуре 450-550°С в течение 4-16 ч, горячую прокатку при температуре 350-450°С с суммарной степенью деформации ≥70%, холодную прокатку с суммарной степенью деформации ≥80%, отжиг при 150-250°С в течение 1-5 ч. Основным недостатком этого способа является трудоемкость и энергозатратность процесса получения листов, также размер зерна превышает 10 мкм и размер частиц составляет ~2 мкм.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ получения листов из алюминиевого сплава на основе системы Al-Mg-Mn (RU №2451105, публ. 20.05.2012), включающий:
- кристаллизацию слитков со скоростью не менее 15 К/с с температурой разливки не менее 800°С;
- гомогенизацию, совмещенную с гетерогенизационным отжигом при температуре 480°С в течение 6 ч;
- горячую прокатку при температуре 430°С с суммарным обжатием 50%;
- предварительную холодную прокатку с обжатием 70%;
- промежуточный отжиг при температуре 510°С в течение 30 мин;
- окончательную холодную прокатку с обжатием 70%.
Главным недостатком этого способа является трудоемкость получения листов и энергозатратность.
Задачей предлагаемого изобретения является получение листов из алюминиевых сплавов на основе системы Al-Mg-Mn с однородной мелкозернистой структурой и равномерным распределением дисперсных наноразмерных частиц при сокращении количества и продолжительности технологических операций и снижении энергозатрат.
Решение поставленной задачи достигается тем, что в способе получения листов из алюминиевых сплавов на основе системы Al-Mg-Mn, включающем кристаллизацию слитков, гомогенизацию, прокатку и отжиг проводят операции следующим образом: слиток отливают полунепрерывным литьем в кристаллизатор скольжения, кристаллизацию проводят со скоростью не менее 100 К/с с температурой разливки 700-720°С, затем проводят гомогенизационный отжиг при температуре 360°С в течение 6 ч, после чего осуществляют прокатку при комнатной температуре с суммарным обжатием 80% с последующим рекристаллизационным отжигом при температуре 320°С в течение 2 ч.
Таким образом, поставленная задача решена. Совокупность существенных признаков в предлагаемом способе позволяет получить технический результат, заключающийся в получение листов с однородной мелкозернистой структурой и равномерным распределением дисперсных наноразмерных частиц при сокращении количества и продолжительности технологических операций и снижении энергозатрат.
Температура разливки 700-720°С обеспечивает полное растворение интерметаллидных фаз и обеспечивает достаточную жидкотекучесть при разливке в форму. Перегрев свыше 720°С нежелателен, так как при этом сильно повышается окисляемость металла и образуется водородная пористость. Высокая скорость кристаллизации обеспечивает образование пересыщенного твердого раствора Zr и Mn в алюминиевой матрице и формирование исходной более мелкозернистой структуры.
При выдержке в течение 0,5-1 ч при 700-720°С расплава повышается степень его гомогенности за счет растворения первичных интерметаллидов, входящих в состав компонентов шихты. При отливке слитка методом полунепрерывного литья в кристаллизатор скольжения, предусматривающим обязательное интенсивное охлаждение слитка водой, обеспечивается скорость охлаждения металла в интервале температур кристаллизации, позволяющая зафиксировать цирконий, входящий в состав сплава, в пересыщенном твердом растворе, который распадается при отжиге слитка при 360°С в течение 6 ч с образованием дисперсных вторичных когерентных выделений фазы Al3Zr размером менее 5 нм, тормозящих рост зерен при повышенных температурах. Также низкая температура гомогенизации обеспечивает стабильность размера и морфологии дисперсных наноразмерных частиц Al6Mn. Сохранение размера и формы частиц Al6Mn в нанометровом диапазоне сферической формы способствует формированию стабильной и однородной мелкозернистой структуры при деформации и отжиге.
При прокатке заготовки при температуре с суммарным обжатием 80% происходит измельчение зерен, и при последующем рекристаллизационном отжиге формируется полностью рекристаллизованная однородная по сечению заготовки структура с размером зерен ~5 мкм и равномерным распределением дисперсных наноразмерных частиц сферической формы Al6Mn (35 нм).
Пример осуществления способа
С использованием в качестве шихтовых материалов алюминия, магния и лигатур AlZr и AlMn, AlTiB готовили расплав алюминиевого сплава на основе системы Al-Mg-Mn содержащего, мас. %: Al - 5.4, Mg - 0.5, Mn - 0.1, Zr - 0.12, Si - 0.014 и Fe.
Перед отливкой слитка расплав выдерживали 1 ч при температуре 710°С и затем методом полунепрерывного литья в кристаллизатор скольжения отливали слиток (скорость кристаллизации не менее 100 К/с), который затем подвергали гомогенизационному отжигу при 360°С в течение 6 ч с последующим охлаждением с печью. После гомогенизации слитки обрабатываются для удаления поверхностных дефектов.
Затем проводили прокатку при комнатной температуре с суммарным обжатием 80%.
В дальнейшем один лист был подвергнут последующему стандартному рекристаллизационному отжигу при температуре 400°С в течение 2 часов (Т.A. Lebedkina, М.А. Lebyodkin, Т.Т. Lamark, М. Janecek, Y. Estrin, MSE А 615 (2014) 7-13). Другие листы были подвергнуты рекристаллизационному отжигу в интервале температур 300-360°С в течение 2 часов. Плиты после всех температур подвергались анализу на предмет установления размера зерна и частиц в листах для получения сравнительных данных. Из этих данных видно, что проведение рекристаллизационного отжига при температуре 320°С в течение 2 часов обеспечивает формирование однородной мелкозернистой структуры (Таблица 1).
Исследование тонкой структуры в листе, после холодной прокатки с суммарным обжатием 80% и последующего рекристаллизационного отжига при температуре 320°С в течение 2 часов, показало, что дисперсные наноразмерные частицы Al6Mn не изменили свою форму и размер и имеют однородное распределение по матрице.
Анализ структуры листа, полученного по данной технологии, проводился согласно стандарту ASTM Е1382-97 с использованием оптических микроскопов с программами количественного анализа изображения; просвечивающего электронного микроскопа с приставками для локального химического анализа, сканирующего электронного микроскопа с приставками для анализа разориентировок и локального химического анализа энергодисперсионным и волновым методами. Определение размера зерен методом оптической микроскопии, определение природы, размера и распределения вторых фаз методом сканирующей и просвечивающей микроскопии проводились согласно стандартам ASTM Е3-01 и ASTM Е1382-97.
Производство листов из алюминиевых сплавов на основе системы Al-Mg-Mn по предлагаемому способу позволяет сократить продолжительность и количество технологических операций и при этом обеспечивает формирование однородной мелкозернистой структуры с размером зерна 5 мкм и однородное распределение дисперсных наноразмерных частиц равноосной формы (35 нм).
Предлагаемый способ реализуем в промышленном производстве и позволяет повысить производительность процесса листовых деталей из алюминиевых сплавов на основе системы Al-Mg-Mn за счет сокращения продолжительности и количества технологических операций. Листы из алюминиевых сплавов на основе системы Al-Mg-Mn, получаемые предлагаемым способом, могут быть использованы в качестве конструкционного материала для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных поездов, а также для изготовления корпусов автомобилей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ ИЗ СПЛАВА СИСТЕМЫ АЛЮМИНИЙ-МАГНИЙ-МАРГАНЕЦ | 2010 |
|
RU2451105C1 |
ВЫСОКОПРОЧНЫЙ ТЕРМОСТОЙКИЙ МЕЛКОЗЕРНИСТЫЙ СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Mn-Mg-Sc-Nb-Hf И ИЗДЕЛИЕ ИЗ НЕГО | 2020 |
|
RU2747180C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПЛАСТИЧНОГО ЛИСТА ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА | 2010 |
|
RU2449047C1 |
СВЕРХПЛАСТИЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2011 |
|
RU2491365C2 |
СПОСОБ ОБРАБОТКИ КРИОГЕННОГО АЛЮМИНИЕВОГО СПЛАВА | 2022 |
|
RU2815083C1 |
Ультрамелкозернистые алюминиевые сплавы для высокопрочных изделий, изготовленных в условиях сверхпластичности, и способ получения изделий | 2020 |
|
RU2739926C1 |
СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРОВАННОЙ ЗАГОТОВКИ ИЗ АЛЮМИНИЕВОГО СПЛАВА СИСТЕМЫ АЛЮМИНИЙ-МАГНИЙ-МАРГАНЕЦ-СКАНДИЙ-ЦИРКОНИЙ | 2010 |
|
RU2453626C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОДЛОЖКИ ИЗ СПЛАВА НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ НОСИТЕЛЯ МАГНИТНОЙ ЗАПИСИ | 1993 |
|
RU2042736C1 |
АЛЮМИНИЕВЫЙ СПЛАВ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛУФАБРИКАТОВ ИЛИ ДЕТАЛЕЙ АВТОМОБИЛЕЙ, СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОСЫ АЛЮМИНИЕВОГО СПЛАВА ИЗ УКАЗАННОГО АЛЮМИНИЕВОГО СПЛАВА, ПОЛОСА АЛЮМИНИЕВОГО СПЛАВА И ЕЕ ПРИМЕНЕНИЕ | 2014 |
|
RU2637458C2 |
АНОДИРОВАННЫЙ АЛЮМИНИЙ ТЕМНО-СЕРОГО ЦВЕТА | 2017 |
|
RU2717622C1 |
Изобретение относится к области металлургии, а именно к способам получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец, применяемых для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных поездов, а также для изготовления корпусов автомобилей. Способ включает кристаллизацию слитков со скоростью не менее 100 К/с с температурой разливки 700-720°С, гомогенизационный отжиг при температуре 360°С в течение 6 ч, после чего осуществляют прокатку при комнатной температуре с суммарным обжатием 80% с последующим рекристаллизационным отжигом при температуре 320°С в течение 2 ч. Способ обеспечивает получение листов с однородной мелкозернистой структурой и равномерным распределением дисперсных наноразмерных частиц. 1 пр., 1 табл.
Способ получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец, включающий кристаллизацию слитков, гомогенизацию, прокатку и отжиг, отличающийся тем, что кристаллизацию проводят со скоростью не менее 100 К/с с температурой разливки 700-720°С, гомогенизацию осуществляют при температуре 360°С в течение 6 ч, а прокатку проводят при комнатной температуре с суммарным обжатием 80% с последующим рекристаллизационным отжигом при температуре 320°С в течение 2 ч.
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ ИЗ СПЛАВА СИСТЕМЫ АЛЮМИНИЙ-МАГНИЙ-МАРГАНЕЦ | 2010 |
|
RU2451105C1 |
Способ регулирования процесса опорожнения газонаполненной емкости и устройство для его осуществления | 1986 |
|
SU1479786A1 |
СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРОВАННОЙ ЗАГОТОВКИ ИЗ АЛЮМИНИЕВОГО СПЛАВА СИСТЕМЫ АЛЮМИНИЙ-МАГНИЙ-МАРГАНЕЦ-СКАНДИЙ-ЦИРКОНИЙ | 2010 |
|
RU2453626C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВОЙ ЗАГОТОВКИ ИЗ АЛЮМИНИЕВО-МАГНИЕВОГО СПЛАВА | 2014 |
|
RU2575264C1 |
EP 1407057 B1, 20.04.2005. |
Авторы
Даты
2017-12-04—Публикация
2016-07-04—Подача