Способ получения квазисферических частиц титана Российский патент 2018 года по МПК B22F1/00 B22F9/04 C22B34/12 

Описание патента на изобретение RU2641428C1

Изобретение относится к области материаловедения порошковых металлических материалов и может быть использовано в технологических циклах получения прекурсоров для синтеза интерметаллических и керамических соединений, а также для производства химических катализаторов.

Известен способ получения наноструктурированных порошков для керамики, синтезированных методом ультразвукового распылительного пиролиза (А.В. Галахов, Л.В. Виноградов, В.И. Антипов, А.Г. Колмаков. Наноструктурированные порошки для керамики. // Российские нанотехнологии. 2011. Т. 6. №9-10. С. 131-135).

Исходным сырьем для получения порошков служат водорастворимые (или растворимые в органических жидкостях) соединения, содержащие набор компонентов, требующихся для синтеза порошкового материала с необходимым элементным и фазовым составом. Рабочие растворы преобразуются в газовую взвесь капель микронного размера с помощью ультразвукового генератора аэрозолей. Образование порошковых частиц происходит при пиролизе капель аэрозоля, транспортируемого через горячую зону проходного реактора. При этом газ - носитель аэрозоля - еще выполняет и функцию активного компонента реакции. Указанным способом были получены порошки ZrO2+Y2O3 со средним размером частиц 0.8 мкм и средним размером внутричастичных зерен 26 нм. Недостатком данного метода является технологическая сложность процесса обработки и отсутствие возможности получения порошков чистых металлов.

Известен способ синтеза пористых титановых микросферических частиц (Н.Н. Nersisyan, H.I. Won, C.W. Won, J.B. Kim, S.M. Park, J.H. Kim Combustion synthesis of porous titanium microspheres // Materials Chemistry and Physics. 2013. V. 141. P. 283-288) из смеси порошков диоксида титана (99% чистоты, размер частиц: 0.1-0.3 мкм) и магния (99% чистоты, размер частиц: 50-300 мкм).

Порошок TiO2 подвергали термической обработке на воздухе в диапазоне 600-1300°С в течение 2 ч, чтобы модифицировать размер и форму частиц. Затем его охлаждали до комнатной температуры и просеивали через 300 микронное сито. Затем порошки TiO2 и Mg смешивали, подвергали обработке в шаровой мельнице в течение 30 минут и вручную спрессовывали в металлической оснастке. Чашку со смесью помещали в реакционную камеру, которую вакуумировали и заполняли аргоном до давления 2 МПа, чтобы предотвратить возможные потери магния и удлинение образца в процессе самораспространяющегося высокотемпературного синтеза. Для старта синтеза использовалась легковоспламеняющаяся смесь титана, черной сажи и тефлона. После синтеза образец охлаждали, механически очищали от продуктов реакции и подвергали химической обработке в водном растворе азотной кислоты для удаления оставшегося магния и его оксидов с последующей промывкой в дистиллированной воде и длительной (несколько часов) просушкой на воздухе при температурах 80-90°С. В результате такой обработки удается получить сферические частицы титана, размерами 10-50 мкм, с высокой плотностью пор до 2 мкм в диаметре, при этом часть таких частиц представляют собой полые сферические образования с толщиной стенок до нескольких микрон. Недостатком данного метода является технологическая сложность процесса обработки, требующая как применения вакуумной техники, так и химической обработки кислотой для удаления вспомогательных компонентов.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ получения измельченного титанового порошка со сферическими частицами (D. Kogut, L. Jacobsen, W. Ernst, D. Armstrong «Attrited titanium powder» US patent 20080031766 A1, B22F 9/16, 07.02.2008).

В качестве исходных материалов используются порошки титана или титановых сплавов. Обработку порошков проводили в струйной мельнице с применением инертных газов при различных давлениях и скоростях подачи порошков. Данный способ применяется для увеличения насыпной плотности титановых порошков за счет изменения морфологии отдельных частиц порошка. Обработка исходных частиц, обладающих вытянутой формой, позволяет получить частицы порошка почти сферической формы, размерами менее 100 мкм, что приводит к значительному увеличению насыпной плотности обрабатываемого материала.

Задачей настоящего изобретения является разработка способа получения квазисферических частиц титана.

Поставленная задача решается посредством того, что заявленный способ включает механическую обработку порошка титана в планетарной шаровой мельнице в инертной атмосфере аргона, но в отличие от прототипа, в качестве исходного материала применяется порошок чистого титана марки ПТОМ-2 и обработку проводят в шаровой мельнице при ускорении шаров от 100 до 600 м/с2 продолжительностью не менее 5 минут.

Сущность изобретения поясняется рисунками:

Фиг. 1 - РЭМ изображение исходного порошка титана ПТОМ-2.

Фиг. 2 - РЭМ изображение порошка титана после механической активации (10 минут).

Фиг. 3 - РЭМ изображение частицы активированного титана в разрезе (10 минут).

Предложенный способ осуществляется следующим образом.

Механическая обработка (активация) порошка титана проводится в планетарной шаровой мельнице. Загрузка и обработка порошка производятся в инертной атмосфере. Продолжительность механической активации, коэффициент загрузки, количество и размер мелющих тел выбираются в зависимости от характеристик шаровой мельницы. Для ограничения разогрева материала в процессе обработки мельница оснащается водяным охлаждением или обработка осуществляется с перерывами. В результате комплексного действия процессов деформации, слипания и фрагментации происходит формирование конгломератов титана из мелкодисперсных частиц. Такие конгломераты характеризуются высокой дефектностью внутренней структуры и сильно активированной поверхностью.

Примеры использования заявленного изобретения приведены ниже.

Пример 1

Порошок титана марки ПТОМ-2 был подвергнут механической активации продолжительностью 5 минут в планетарной шаровой мельнице АГО-2. При обработке использовалась стальная оснастка, атмосфера аргона, центробежное ускорение шаров составляло 200 м/с2.

Пример 2

Порошок титана марки ПТОМ-2 с размером частиц менее 30 мкм (фиг. 1) был подвергнут механической активации продолжительностью 10 минут в планетарной шаровой мельнице АГО-2. При обработке использовалась стальная оснастка, атмосфера аргона, центробежное ускорение шаров составляло 400 м/с2. Загрязнения обрабатываемого порошка материалом оснастки обнаружено не было.

Как показано на фиг. 2, после механической активации формируются порошинки, размер которых находится в диапазоне от 10 до 100 микрометров. Эти порошинки представляют собой квазисферические конгломераты, состоящие из частиц размерами от субмикронных до нескольких микрон и обладающие развитой сильноактивированной поверхностью. Изучение сечения такой порошинки в разрезе (фиг. 3) свидетельствует о том, что полученный материал характеризуется малой остаточной пористостью. Согласно данным рентгеноструктурного анализа, размер областей когерентного рассеяния обработанного порошка составляет 26 нм (до обработки более 300 нм). При этом отмечается рост микроискажений кристаллической решетки, достигающих 1.3%. Микротвердость обработанного порошка после 10 минут механической активации возрастает с 1.95 ГПа в исходном состоянии до 4.4 ГПа, что также свидетельствует о накоплении высокой плотности дефектов кристаллического строения и фрагментации микроструктуры. Такая аккумуляция энергии деформации может приводить к изменениям теплофизических свойств материала.

К преимуществам изобретения следует отнести технологическую простоту и малую продолжительность цикла обработки, отсутствие требования дополнительного нагрева материала в процессе обработки, формирование в материале высокодефектного состояния, реализацию деформационного упрочнения материала.

Похожие патенты RU2641428C1

название год авторы номер документа
Способ получения наноразмерных мультиоксидов тугоплавких металлов 2021
  • Дитенберг Иван Александрович
  • Пинжин Юрий Павлович
  • Гриняев Константин Вадимович
  • Смирнов Иван Владимирович
  • Светличный Валерий Анатольевич
RU2799512C2
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ МЕДИ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 2014
  • Дитенберг Иван Александрович
  • Денисов Константин Игоревич
  • Тюменцев Александр Николаевич
  • Корчагин Михаил Алексеевич
  • Корзников Александр Вениаминович
RU2539496C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ НИКЕЛЯ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 2014
  • Дитенберг Иван Александрович
  • Денисов Константин Игоревич
  • Тюменцев Александр Николаевич
  • Корчагин Михаил Алексеевич
  • Корзников Александр Вениаминович
RU2554834C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ НИОБИЯ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 2013
  • Дитенберг Иван Александрович
  • Денисов Константин Игоревич
  • Тюменцев Александр Николаевич
  • Корчагин Михаил Алексеевич
  • Корзников Александр Вениаминович
RU2521945C1
Способ получения композитного титан-ниобиевого порошка для аддитивных технологий 2015
  • Шаркеев Юрий Петрович
  • Сапрыкин Александр Александрович
  • Ковалевская Жанна Геннадьевна
  • Ибрагимов Егор Артурович
  • Бабакова Елена Владимировна
  • Химич Маргарита Андреевна
  • Яковлев Владимир Иванович
RU2617572C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВЫХ СПЛАВОВ СФЕРИЧЕСКОЙ ФОРМЫ НА ОСНОВЕ НИКЕЛИДА ТИТАНА ДЛЯ ПРИМЕНЕНИЯ В АДДИТИВНЫХ ТЕХНОЛОГИЯХ 2021
  • Разумов Николай Геннадьевич
  • Махмутов Тагир Юлаевич
  • Ким Артем
  • Гончаров Иван Сергеевич
  • Озерской Николай Евгеньевич
  • Силин Алексей Олегович
  • Мазеева Алина Константиновна
  • Попович Анатолий Анатольевич
RU2779571C2
Способ получения порошкового композиционного материала 2020
  • Прибытков Геннадий Андреевич
  • Коростелева Елена Николаевна
  • Барановский Антон Валерьевич
  • Коржова Виктория Викторовна
  • Криницын Максим Германович
  • Кривопалов Владимир Петрович
RU2750784C1
Способ получения сверхвысокотемпературного керамического материала на основе карбонитрида гафния 2019
  • Буйневич Вероника Сергеевна
  • Непапушев Андрей Александрович
  • Московских Дмитрий Олегович
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2729277C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТИТАНАТА ДИСПРОЗИЯ ДЛЯ ПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ЯДЕРНОГО РЕАКТОРА 2015
  • Панов Владимир Сергеевич
  • Еремеева Жанна Владимировна
  • Мякишева Лариса Васильевна
  • Московских Дмитрий Олегович
  • Непапушев Андрей Александрович
  • Росляков Сергей Игоревич
RU2590887C1
Способ получения нанокерамики методом совмещения самораспространяющегося высокотемпературного синтеза и искрового плазменного спекания 2015
  • Московских Дмитрий Олегович
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2614006C1

Иллюстрации к изобретению RU 2 641 428 C1

Реферат патента 2018 года Способ получения квазисферических частиц титана

Изобретение относится к получению порошка титана. Способ включает механическую обработку порошка титана в водоохлаждаемой планетарной шаровой мельнице в инертной атмосфере аргона. Используют порошок чистого титана марки ПТОМ-2. Обработку порошка ведут с активацией поверхности частиц порошка при ускорении шаров от 100 до 600 м/с2 в течение не менее 5 минут. Обеспечивается получение квазисферических частиц порошка титана. 3 ил.

Формула изобретения RU 2 641 428 C1

Способ получения квазисферических частиц порошка титана, включающий механическую обработку порошка титана в водоохлаждаемой планетарной шаровой мельнице в инертной атмосфере аргона, отличающийся тем, что используют порошок чистого титана марки ПТОМ-2, причем обработку порошка ведут с активацией поверхности частиц порошка при ускорении шаров от 100 до 600 м/с2 в течение не менее 5 минут.

Документы, цитированные в отчете о поиске Патент 2018 года RU2641428C1

US 20080031766 A1, 07.02.2008
WO 2005051579 A2, 09.06.2005
US 9421612 B2, 23.08.2016
Способ обработки порошка титана 1982
  • Стремилова Нина Николаевна
  • Брагина Вера Филипповна
  • Дрозденко Виктор Антонович
  • Гимельштейн Борис Григорьевич
  • Прозоров Владимир Михайлович
  • Опольский Анатолий Валериевич
  • Дрозденко Валентина Ивановна
  • Анохин Вячеслав Михайлович
  • Бойко Анатолий Иванович
SU1077699A1

RU 2 641 428 C1

Авторы

Дитенберг Иван Александрович

Корчагин Михаил Алексеевич

Тюменцев Александр Николаевич

Пинжин Юрий Павлович

Гриняев Константин Вадимович

Даты

2018-01-17Публикация

2016-11-18Подача