Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях Российский патент 2018 года по МПК G01N33/49 

Описание патента на изобретение RU2642589C2

Изобретение относится к области биофизики, а именно к медицинской физике, и описывает способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом (ОЛЛ), в частности, прогнозирования рисков возникновения лекарственной резистентности при проведении химиотерапии у пациентов с ОЛЛ с помощью исследования свойств биологических жидкостей физическими методами. Способ включает в себя определение и оценку количественных уровней концентрации аденозинтрифосфата (АТФ), в клетках крови, методом лазерной конфокальной микроскопии, после получения курса химиотерапии пациентом. Изобретение может быть использовано в онкологии, в клинической лабораторной практике для индивидуального прогнозирования эффективности химиотерапии при лечении острых лимфобластных лейкозов у детей.

Известно изобретение «Способ прогнозирования эффективности химиотерапии у больных со злокачественными новообразованиями эпителиальных тканей» (патент РФ №2542505, 2013 г., G01N 33/49), содержащее сходный с используемым в заявляемом способе принцип выбора молекулярных маркеров химиочувствительности новообразований.

Недостатком этого способа является то, что с его помощью не представляется возможным производить работу с флуоресцентными маркерами, а именно обеспечивать их использование для определения концентраций АТФ в митохондриях клеток крови, что позволит производить оценку степени гепатотоксических эффектов и степени лекарственной резистентности, необходимых для индивидуализации химиотерапии (и ее эффективности) у пациентов.

За прототип изобретения выбран способ прогнозирования эффективности химиотерапии у больных со злокачественными опухолями эпителиальных тканей, включающий в себя исследование крови до и после лечения с количественным определением содержания CD50+ антигена (Алясова А.В. Клинико-неврологические и клинико-иммунологические характеристики рака молочной железы: Автореф. дис. д.м.н., Иваново, 2004, 43 с.).

Описанный в прототипе способ осуществляется следующим образом: иммунофенотипирование мононуклеарных клеток периферической крови проводят с помощью метода непрямой иммунофлуоресценции. Для выделения мононуклеарных клеток периферической крови гепаринизированную кровь, разведенную на 1/3 средой 199, наслаивают на градиент фиколл-верографина (9 объемов крови на 3 объема градиента) и центрифугируют при 1700 об/мин в течение 40 минут при 20°С. Мононуклеарные клетки собирают из интерфазы, а затем трижды отмывают средой 199. При этом центрифугируют в течение 20 минут при 1200 об/мин.

На обезжиренное предметное стекло, предварительно покрытое парафилмом фирмы American Can Company, имеющим круглые перфорации диаметром 7 мм, наносят по 20-50 мкл поли-L-лизина Serva в концентрации 50 мкг/мл. Предметное стекло помещают на 30 минут в термостат при температуре 37°С. Затем его отмывают физиологическим раствором, забуференным 0,01 молярным фосфатным буфером рН 7,4. Суспензию клеток в концентрации 2-106 кл/мл наносят по 40 мкл в лунки на предметное стекло. Предметное стекло выдерживают 30 минут при 37°С во влажной камере. Затем не прикрепившиеся к стеклу клетки отсасывают пипеткой и наносят в лунки раствор моноклональных антител (МКА) объемом 40 мкл. В контрольных образцах клетки обрабатывают физиологическим раствором взамен МКА.

Вновь инкубируют стекла при 37°С во влажной камере в течение 30 минут, после чего отмывают их в пяти порциях физиологического раствора с фосфатным буфером рН 7,4. На отмытые клетки наслаивают по 40 мкл ФИТЦ-меченных фрагментов козьих антител против мышиных иммуноглобулинов производства НПК Препарат и стекла инкубируют на льду во влажной камере в течение 30 минут. Затем стекла промывают в пяти порциях физиологического раствора с фосфатным буфером рН 7,4, заливают 50%-ным глицерином в физиологическом растворе и препарат закрывают предметными стеклами. Просмотр препаратов проводят с помощью люминесцентного микроскопа ЛЮМАМ-И2. Учитывают свечение при увеличении объектива × 40-100, окуляра × 2,5-10. Люминесценцию клеточной поверхности регистрируют визуально. В препарате просчитывали 200-300 клеток. Учитывают общее количество клеток и антиген-положительных клеток. Затем подсчитывают относительное содержание антиген-положительных клеток.

В результате проведенных исследований было показано, что изменение содержания CD50+ клеток является устойчивым признаком, позволяющим прогнозировать исход заболевания. Снижение уровня этой популяции по окончании лечения не менее чем в 1,2-1,6 раза, по сравнению с ее содержанием перед 1 курсом ПХТ, особенно на фоне угнетения иммунологической реактивности, свидетельствует о неэффективности проводимой терапии, возможности развития рецидива заболевания в ближайшие 4-5 месяцев или прогрессирования процесса на фоне введения цитостатиков. Напротив, в случаях повышения в процессе лечения исходно сниженного количества CD50+ клеток отмечалось развитие стойкой ремиссии болезни.

Несовершенство этого способа заключается в недостаточной его автоматизации, а именно, в осуществлении ручным способом подсчета клеток и антиген-положительных клеток, что может приводить к ошибкам в интерпретации результатов эксперимента. Другим недостатком способа является невозможность непосредственного мониторинга рисков возникновения гепатотоксичности и лекарственной резистентности у пациентов.

Задачей предлагаемого изобретения является создание флуоресцентного способа прогнозирования эффективности химиотерапии у больных с острыми лимфобластными лейкозами, обладающего высокой степенью автоматизации ключевых этапов эксперимента, а также обеспечение возможности непосредственного мониторинга рисков возникновения гепатотоксичности и лекарственной резистентности у пациентов.

Поставленная задача решается тем, что во флуоресцентном способе прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях, при котором производят забор крови до и после химиотерапии, выделяют флуоресцентный макро-биомаркер эффективности химиотерапии, согласно изобретению макро-биомаркером является концентрация аденозинтрифосфата в митохондриях клеток крови, которую определяют автоматизировано, с помощью лазерного конфокального микроскопа, путем регистрации интенсивности флуоресценции макро-биомаркера для непосредственного мониторинга рисков возникновения гепатотоксичности и лекарственной резистентности у пациентов.

Заявленный способ основан на использовании определения концентрации АТФ методом лазерной конфокальной микроскопии, который начинается с обработки образца после формирования кровяного сгустка (не ранее чем через 30 минут и не более 3 часов после забора крови). Для максимального разделения сыворотки и клеточного осадка используется режим центрифугирования 2000 об/мин в течение 10 минут при комнатной температуре.

Сыворотка отбирается по 1 мл в криовиалы объемом (1,0-2,0) мл. Пробы хранятся в штативах с крышками, при -80°С до выполнения анализа. При заданном температурном режиме хранения количество жизнеспособных мононуклеарных клеток превышает 25 млн.

При выполнении анализа образцы размораживаются при комнатной температуре. В ламинарном шкафу, при помощи 0,5 мл и 1-мл механических пипеток периферической крови образцы переносятся в маркированные пробирки типа Фалькон объемом 10 мл.

Проба разводится стерильным 0,2 молярным фосфатно-солевым буфером (ФСБ) из расчета 5:1. Уровень рН доводится до 7,8. Образцы центрифугируются на скорости 4000 оборотов в минуту в течение 10 минут при температуре 4°С. Аккуратно удаляется жидкая фаза пипеткой и добавляется 5 мл ФСБ к осадку. Пипеткой объемом 1 мл, осадок разводится в ФСБ и доливается буфер до 5 мл, далее смесь перемешивается. Далее следует дважды повторить процедуру отмывки (центрифугирование образца, удаление жидкой фазы, добавление буфера) при указанных параметрах.

Для выделения митохондрий необходимо выполнить следующую последовательность действий:

1) Выделить МНК на феколе клетки для культивирования, затем произвести лизис эритроцитов в течение 15 минут в пропорции 1 к 10 в натрий-фосфатном буфере PBS, затем произвести одну отмывку клеток, для чего произвести центрифугирование в течение 10 мин со скоростью 1500 оборотов в минуту.

2) Произвести окрашивание митотрекером красным (MitoTracker Red 580). Использовать на 10 мл - 40 мкл красителя, далее инкубировать 20 минут при 37 градусах в CO2 инкубаторе, после инкубации произвести центрифугирование и 1 отмывку в PBS в течение 10 мин на скорости 1500 оборотов в минуту.

3) Произвести выделение митохондрий, для чего осадок МНК суспендировать в гипотонической среде (10 MMTrisHCl, рН 7,6) в течение 7 мин; осмотический шок останавливать добавлением 0,25 М сахарозы. Суспензию центрифугировать 10 мин при 600 об/мин, супернатант сохранить, а осадок вторично подвергнуть осмотическому шоку и снова центрифугировать. Супернатанты объединить и центрифугировать 20 мин при 12000 об/мин для осаждения митохондрий. Осадок митохондрий суспендировать в среде, содержащей 0,25 М сахарозу, 2 мМ ЭДТА, KCl 10 мМ, MgCl2, 1 мМ цистеин 0,05%, рН 7,4.

4) Произвести инкубацию с клетками (1,2,3 сутки), для чего использовать 500 мл суспензии митохондрий на 3 мл культивируемой среды (1 млн клеток на 1 мл). Далее лизировать образцы (суспензии митохондрий) в течение двух часов при температуре - 80°С. Пробу (суспензии митохондрий) разморозить при комнатной температуре, добавить до 5 мл ФСБ и центрифугировать на скорости 4000 об/мин в течение 4 минут при комнатной температуре. Удалить жидкую фазу пипеткой. Для количественного определения АТФ в клетках использовать ATPBioluminescentAssayKit (BAK). Пипеткой добавить в лунки 96-и луночного плоскодонного культурального планшета ТРР по 0,1 мл исследуемого образца, маркировать лунки планшета. Согласно инструкции производителя BAK подготовить люминицентный реагент, и в объеме 0,1 мл смешать с образцом в лунке. Для каждой серии эксперимента приготовить контрольный образец (смесь стандарта АТФ из BAK и ATPAssayMix из BAK в пропорции 1:1 объемом 0,1 мкл), а также образцы калибровочных кривых согласно инструкции BAK.

После подготовительных процедур используется 96-и луночный плоскодонный культуральный планшет ТРР. Механической пипеткой подготовленные образцы помещаются в лунки планшета в объеме 0,1 мл, и делается отметка соответствия об их размещении в лабораторном журнале. Согласно инструкции BAK готовится люминесцентный реагент, который в объеме 0,1 мл смешивается с образцом в лунке. Для каждой серии эксперимента подготавливается контрольный образец (смесь стандарта АТФ из BAK и ATPAssayMix из BAK в пропорции 1:1 объемом 0,1 мкл), а также образцы для построения калибровочной кривой, согласно инструкции BAK. Далее значение интенсивности люминесценции регистрируется с помощью детектора конфокального микроскопа. Детекция проводится в спектре свечения люцеферина желтого (в видимом диапазоне ~ 500-700 нм) с ожидаемым максимумом около 536 нм. Для анализа каждой лунки данные снимаются в нескольких точках. Для построения калибровочной кривой используются стандарты в разной степени разведения и без него. После построения калибровочных кривых берутся пробы пациентов с тяжелыми клиническими проявлениями НПР, где проводятся измерения степени интенсивности люминесценции АТФ с помощью лазерного конфокального микроскопа. На основании полученных спектральных данных о пиковой средней величине интенсивности рассчитывалась концентрация АТФ (мг/мл) по формуле:

Где Inexp - интенсивность свечения образца, Inst - интенсивность свечения стандарта, [АТФ]st - концентрация АТФ в стандарте бралась равной 0.1 мг/мл

По результатам подсчитанной концентрации АТФ делается прогностический вывод об эффективности проводимой химиотерапии посредством взятия нормы концентрации АТФ для здоровой функционирующей клетки (1,04±0.14 мг/мл), при которой осуществляется лекарственный транспорт и не наблюдается риска развития гепатотоксических эффектов в данный момент терапии. Концентрация АТФ в клетке более (0,8±0,112) сигнализирует о наступлении апоптоза клетки. Потери АТФ в клетке более 70% (0,312±0,042) сигнализируют о некрозе клеток.

Таким образом, в заявляемом способе, включающем исследование крови до и после лечения, определяют и используют значение концентрации макро-биологического маркера - АТФ в митохондриях клеток крови пациентов, что позволяет произвести прогноз риска возникновения гепатотоксичности и лекарственной резистентности пациентов, оценив, таким образом, эффективность проводимой химиотерапии в нужный момент времени.

Похожие патенты RU2642589C2

название год авторы номер документа
Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом 2016
  • Зюбин Андрей Юрьевич
  • Бабак Светлана Валерьевна
  • Лаврова Анастасия Игоревна
  • Демин Максим Викторович
RU2647834C2
Способ прогнозирования эффективности лечения больных острыми миелобластными лейкозами противоопухолевыми препаратами даунорубицином и цитозин-арабинозидом 2019
  • Колесникова Мария Александровна
  • Сенькова Александра Васильевна
  • Черников Иван Вячеславович
  • Поспелова Татьяна Ивановна
  • Зенкова Марина Аркадьевна
  • Ковынев Игорь Борисович
RU2702657C1
НАНОЧАСТИЦЫ ФЕРРИТИНА, СОДЕРЖАЩИЕ ХИМИОТЕРАПЕВТИЧЕСКОЕ СРЕДСТВО 2019
  • Маццуккелли, Серена
  • Корси, Фабио
  • Труффи, Марта
  • Проспери, Давиде
  • Коломбо, Мариам
  • Беллини, Микела
RU2810594C2
ПРОГНОЗИРОВАНИЕ ОТВЕТА НА АЛЬВОЦИДИБ С ПОМОЩЬЮ АНАЛИЗА ПРОФИЛЯ МИТОХОНДРИЙ 2016
  • Уорнер, Стивен, Л.
  • Бирсс, Дэвид, Дж.
RU2717829C2
КОМБИНАЦИЯ СИРОСИНГОПИНА И МИТОХОНДРИАЛЬНЫХ ИНГИБИТОРОВ ДЛЯ ЛЕЧЕНИЯ РАКА И ДЛЯ ИММУНОСУПРЕССИИ 2012
  • Бенджамин Дон
  • Коломби Марко
  • Халль Михаэль
  • Морони Кристоф
RU2602937C2
РЕЦЕПТОР-НАПРАВЛЕННЫЕ КОНСТРУКЦИИ И ИХ ПРИМЕНЕНИЕ 2015
  • Медина-Кауве Лали К.
RU2682335C2
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ПРОИЗВОДНОГО ТРИИНДОЛИЛМЕТАНА В КАЧЕСТВЕ ПРОТИВООПУХОЛЕВОГО СРЕДСТВА 2012
  • Лавренов Сергей Николаевич
  • Степанова Евгения Владиславовна
  • Соломко Элисо Шаликовна
  • Иншаков Андрей Николаевич
  • Трещалин Иван Дмитриевич
  • Бычкова Елена Николаевна
  • Преображенская Мария Николаевна
RU2549430C2
ЭКСПРЕСС-СПОСОБ ОПРЕДЕЛЕНИЯ РИСКА ЗЛОКАЧЕСТВЕННОСТИ КЛЕТОК 2012
  • Шварцбурд Полина Михайловна
RU2508542C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНДИВИДУАЛЬНОЙ РЕАКТИВНОСТИ МИТОХОНДРИЙ ЧЕЛОВЕКА ПОД ДЕЙСТВИЕМ ПРЕПАРАТОВ МЕТАБОЛИЧЕСКОГО РЯДА В ПРОБАХ in vitro 2014
  • Ромащенко Олеся Викторовна
RU2578436C1
КЛЕТОЧНАЯ ЛИНИЯ А4 Т-ЛИМФОБЛАСТНОГО ЛЕЙКОЗА ЧЕЛОВЕКА, ИСПОЛЬЗУЕМАЯ ДЛЯ СКРИНИНГА ПРОТИВООПУХОЛЕВЫХ ПРЕПАРАТОВ 2004
  • Соколовская Алиса Анатольевна
  • Заботина Татьяна Николаевна
  • Михайлов Андрей Дмитриевич
  • Блохин Дмитрий Юрьевич
  • Барышников Анатолий Юрьевич
RU2267532C1

Реферат патента 2018 года Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях

Изобретение относится к медицине и касается флуоресцентного способа прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях, при котором производят забор крови до и после химиотерапии, выделяют флуоресцентный макро-биомаркер эффективности химиотерапии, где макро-биомаркером является концентрация аденозинтрифосфата в митохондриях клеток крови, которую определяют автоматизировано, с помощью лазерного конфокального микроскопа, путем регистрации интенсивности флуоресценции макро-биомаркера. Изобретение обеспечивает осуществление оценки эффективности химиотерапии, в частности возникновения гепатотоксических эффектов и лекарственной резистентности при проведении химиотерапии у пациентов-детей с острым лимфобластным лейкозом. 1 пр.

Формула изобретения RU 2 642 589 C2

Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях, при котором производят забор крови до и после химиотерапии, выделяют флуоресцентный макро-биомаркер эффективности химиотерапии, где макро-биомаркером является концентрация аденозинтрифосфата в митохондриях клеток крови, которую определяют автоматизировано, с помощью лазерного конфокального микроскопа, путем регистрации интенсивности флуоресценции макро-биомаркера, где концентрация АТФ, равная (1,04±0,14 мг/мл), соответствует здоровой функционирующей клетке, при которой осуществляется лекарственный транспорт и не наблюдается риска развития гепатотоксических эффектов в данный момент терапии; концентрация АТФ в клетке более (0,8±0,112 мг/мл) сигнализирует о наступлении апоптоза клетки; потеря АТФ в клетке более 70% (0,312±0,042 мг/мл) сигнализирует о некрозе клеток; что позволяет провести прогноз риска возникновения гепатотоксичности и лекарственной резистентности пациентов, оценив, таким образом, эффективность проводимой химиотерапии в нужный момент времени.

Документы, цитированные в отчете о поиске Патент 2018 года RU2642589C2

Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
WESOLOWSKA-ANDERSEN A., et al., Genomic profiling of thousands of candidate polymorphisms predicts risk of relapse in 778 Danish and German childhood acute lymphoblastic leukemia patients.Leukemia
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
JAMROZIAK K., et al., Do polymorphisms in ABC transporter genes influence risk of childhood acute lymphoblastic leukemia? Leuk Res
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1

RU 2 642 589 C2

Авторы

Зюбин Андрей Юрьевич

Бабак Светлана Валерьевна

Лаврова Анастасия Игоревна

Демин Максим Викторович

Даты

2018-01-25Публикация

2016-06-17Подача