СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ НЕФТЯНОГО КОКСА Российский патент 2018 года по МПК C22B34/22 C22B3/06 C22B7/00 

Описание патента на изобретение RU2647725C1

Изобретение относится к нефтеперерабатывающей промышленности и к способам получения ванадия из нефтяного кокса процессом выщелачивания.

Известен способ извлечения ванадия из нефтяного кокса (патент РФ №2033449, опубл. 20.04.1995 г.), по которому нефтяной кокс измельчают до максимального размера частиц 100 мкм, затем подвергают термической обработке при 380-420°C при подаче воздуха в течение 2-6 ч и выщелачиванию в растворе серной кислоты в течение 2-3 ч при Т:Ж - 1:3 и температуре 90-100°C.

Недостатком данного способа является необходимость предварительной продолжительной термообработки при достаточно высоких температурах, кроме того, при подаче воздуха происходит существенная потеря массы кокса в количестве 40-70%. Углерод кокса переходит в углекислый газ, тем самым не позволяя использовать потерянную массу как восстановитель в металлургии или как абсорбент в химическом производстве.

Известен способ извлечения ванадия из нефтяного кокса (патент США №4389378, опубл. 21.06.1983) путем смешивания с солями щелочных металлов, обжига шихты при температуре ниже точки плавления добавляемых солей и последующего перевода ванадия в водный раствор, откуда он может быть осажден известными способами.

Недостатком этого способа является потеря значительной части углерода коксовой массы при обжиге и невозможность его дальнейшего использования в качестве сорбента в химической промышленности или восстановителя в металлургии.

Известен способ извлечения ванадия из нефтяного кокса (Патент США №4816236, 28.03.1989) путем полной газификации кокса, получения золы и горючего газа, и извлечения ванадия из золы.

Недостатком данного способа является полная конверсия углерода нефтяного кокса в горючий газ, что не позволяет его использовать как восстановитель в металлургии, как абсорбент в химических производствах, как наполнитель в резиновой промышленности.

Известен способ извлечения ванадия из нефтяного кокса (патент РФ №1616169, опубл. 27.05.1995 г.), по которому нефтяным коксом термоконтактного крекинга с содержанием серы не менее 7% и ванадия не менее 0,6% при 1200-1300°C восстанавливают ильменитовый концентрат с переводом ванадия из коксов в продукты восстановления, которые охлаждают со скоростью 100-180 град/мин в инертной атмосфере, а затем проводят магнитную сепарацию с получением магнитного продукта.

Недостатком данного способа является ограничение по использованию малосернистых коксов (менее 7%), а также высокие температуры процесса и необходимость в специфическом продукте - ильменитовом концентрате. Кроме того, данный способ включает применение энергозатратного процесса магнитной сепарации, а нефтяной кокс окисляется полностью, что не позволяет использовать его после извлечения ванадия в металлургической и химической промышленностях.

Известен способ извлечения ванадия из нефтяного кокса (патент РФ №2070940, опубл. 27.12.1996 г.), принятый за прототип, по которому нефтяной кокс измельчают до максимального размера частиц менее 0,063-0,100 мм, выдерживают в концентрированной серной кислоте при температуре не ниже 270°С, Т:Ж от 1:2 до 1:5 в течение 1,5-4 часов.

Недостатком предложенного способа является необходимость использования специального реактора и высокая температура (выше 270°C) сернокислотного выщелачивания. Кроме того, в описании указаны ограничения по использованию для извлечения нефтяного кокса с содержанием ванадия - не менее 0,3% и способу его получения - термоконтактный крекинг.

Техническим результатом является извлечение ванадия из нефтяного кокса в количестве от 72,19 до 80,85% с сохранением основной массы кокса после выщелачивания (92,6-96,1%), который после осушки может быть использован как восстановитель в металлургии или как абсорбент в химическом производстве.

Технический результат достигается тем, что выщелачивание проводят в смеси концентрированных серной и азотной кислот в соотношении 1:1 при температуре от 95 до 105°C при соотношении нефтяного кокса и смеси кислот от 1:3 до 3:1 в течение от 1 до 2 часов.

Способ осуществляется следующим образом.

Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 95-105°C при соотношении твердой (кокс) и жидкой (кислота) фаз от 1:3 до 3:1 в течение 1-4 часов.

Из представленных данных (таблица 1) видно, что предлагаемый способ извлечения ванадия из нефтяного кокса позволяет добиться эффективности извлечения от 72,19 до 80,85% при потере массы кокса от 3,9 до 7,4% при времени выщелачивания 1-2 ч.

Способ поясняется следующими примерами.

Пример 1. Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 95°C при соотношении твердой (кокс) и жидкой (кислота) фаз 1:3 в течение 1 часа (таблица 1).

Извлечение ванадия в раствор при данных параметрах составляет 80,85%, а масса сухого остатка кокса после выщелачивания - 95,2% (таблица 1).

Пример 2. Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 100°C при соотношении твердой (кокс) и жидкой (кислота) фаз 1:1 в течение 1 часа (таблица 1).

Извлечение ванадия в раствор при данных параметрах составляет 76,33%, а масса сухого остатка кокса после выщелачивания - 95,0% (таблица 1).

Пример 3. Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 105°C при соотношении твердой (кокс) и жидкой (кислота) фаз 3:1 в течение 1 часа (таблица 1).

Извлечение ванадия в раствор при данных параметрах составляет 77,83%, а масса сухого остатка кокса после выщелачивания - 96,1% (таблица 1).

Пример 4. Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 95°C при соотношении твердой (кокс) и жидкой (кислота) фаз 1:3 в течение 2 часов (таблица 1).

Извлечение ванадия в раствор при данных параметрах составляет 75,87%, а масса сухого остатка кокса после выщелачивания - 93,5% (таблица 1).

Пример 5. Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 100°C при соотношении твердой (кокс) и жидкой (кислота) фаз 1:1 в течение 2 часов (таблица 1).

Извлечение ванадия в раствор при данных параметрах составляет 80,02%, а масса сухого остатка кокса после выщелачивания - 92,6% (таблица 1).

Пример 6. Нефть на атмосферно-вакуумной трубчатой установке (АВТ) подвергают перегонке, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C, и подвергают процессу деасфальтизации с выделением асфальта, который подвергают замедленному коксованию при температурах 450-510°C и давлении от 0,10 до 0,40 МПа с получением содержащего ванадий нефтяного кокса, который измельчают до максимального размера частиц не более 0,100 мм и подвергают процессу выщелачивания путем выдержки в смеси концентрированной серной и азотной кислот (1:1) при температуре 105°С при соотношении твердой (кокс) и жидкой (кислота) фаз 3:1 в течение 2 часов (таблица 1).

Извлечение ванадия в раствор при данных параметрах составляет 72,19%, а масса сухого остатка кокса после выщелачивания - 94,7% (таблица 1).

Предлагаемая технология извлечения ванадия из нефтяного кокса позволит на нефтеперерабатывающих заводах кроме основной продукции получать потенциально ценный компонент тяжелого нефтяного сырья - ванадий.

Похожие патенты RU2647725C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ И НИКЕЛЯ ИЗ КОКСА ДЛЯ ДЕМЕТАЛЛИЗАЦИИ НЕФТЯНОГО СЫРЬЯ 2018
  • Якубов Махмут Ренатович
  • Зотиков Алексей Николаевич
  • Примаченко Александр Сергеевич
  • Лисовская Светлана Анатольевна
RU2685290C1
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ СУДОВЫХ ВЫСОКОВЯЗКИХ ТОПЛИВ И НЕФТЯНОГО КОКСА 2015
  • Кондрашева Наталья Константиновна
  • Рудко Вячеслав Алексеевич
  • Кондрашев Дмитрий Олегович
  • Шайдулина Алина Азатовна
RU2601744C1
СПОСОБ УГЛУБЛЁННОЙ ПЕРЕРАБОТКИ НЕФТИ 2021
  • Шуверов Владимир Михайлович
  • Зайнутдинов Рустам Амирович
  • Зиганшин Карим Галимзянович
RU2802477C2
СПОСОБ РЕГЕНЕРАЦИИ МОЛИБДЕНСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ГИДРОКОНВЕРСИИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 2018
  • Кадиев Хусаин Магамедович
  • Висалиев Мурат Яхьяевич
  • Кадиева Малкан Хусаиновна
  • Зекель Леонид Абрамович
  • Дандаев Асхаб Умалтович
RU2683283C1
СПОСОБ ПОЛУЧЕНИЯ НЕФТЯНОЙ СПЕКАЮЩЕЙ ДОБАВКИ В ШИХТУ КОКСОВАНИЯ УГЛЕЙ 2011
  • Валявин Геннадий Георгиевич
  • Запорин Виктор Павлович
  • Сухов Сергей Витальевич
  • Мамаев Михаил Владимирович
  • Бидило Игорь Викторович
  • Валявин Константин Геннадьевич
  • Стуков Михаил Иванович
  • Загайнов Владимир Семенович
RU2452760C1
Способ получения сырья для производства нефтяного электродного кокса 1980
  • Гимаев Рагиб Насретдинович
  • Рианов Раит Нуриханович
  • Махов Александр Феофанович
  • Теляшев Гумер Гарифович
  • Усманов Риф Мударисович
  • Валявин Геннадий Георгиевич
  • Алексеев Петр Михайлович
SU863617A1
СПОСОБ ПЕРЕРАБОТКИ НЕФТЯНЫХ ОСТАТКОВ 2017
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Овчинников Кирилл Александрович
  • Никульшин Павел Анатольевич
  • Шмелькова Ольга Ивановна
  • Виноградова Наталья Яковлевна
  • Битиев Георгий Владимирович
  • Митусова Тамара Никитовна
  • Лобашова Марина Михайловна
  • Красильникова Людмила Александровна
  • Юсовский Алексей Вячеславович
RU2671640C1
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДСОДЕРЖАЩЕГО СЫРЬЯ (ВАРИАНТЫ) 2012
  • Галиахметов Раиль Нигматьянович
  • Мустафин Ахат Газизьянович
RU2485167C1
СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО СЫРЬЯ, ТАКОГО КАК ТЯЖЕЛАЯ СЫРАЯ НЕФТЬ И КУБОВЫЕ ОСТАТКИ 2003
  • Монтанари Ромоло
  • Маркьонна Марио
  • Панарити Николетта
  • Дельбьянко Альберто
  • Рози Серджо
RU2352616C2
СПОСОБ ГИДРОКОНВЕРСИИ НЕФТЯНЫХ ФРАКЦИЙ ПО SLURRY-ТЕХНОЛОГИИ, ОБЕСПЕЧИВАЮЩИЙ ИЗВЛЕЧЕНИЕ МЕТАЛЛОВ КАТАЛИЗАТОРА И СЫРЬЯ, ВКЛЮЧАЮЩИЙ СТАДИЮ КОКСОВАНИЯ 2011
  • Эро Жан-Филипп
  • Морель Фредерик
  • Киньяр Ален
RU2570200C2

Реферат патента 2018 года СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ НЕФТЯНОГО КОКСА

Изобретение относится к способу получения ванадия из нефтяного кокса процессом выщелачивания. Способ включает измельчение нефтяного кокса и последующее выщелачивание из него ванадия смесью концентрированных серной и азотной кислот. Степень извлечения ванадия составляет 72,19-80,85%, при этом масса сухого остатка нефтяного кокса составляет 92,6-96,1%, что позволяет в дальнейшем использовать последний в качестве углеродного восстановителя в металлургии, как абсорбент в химическом производстве. Способ извлечения ванадия из нефтяного кокса найдет широкое применение на НПЗ с процессами замедленного коксования нефтяного сырья. 1 табл., 5 пр.

Формула изобретения RU 2 647 725 C1

Способ извлечения ванадия из нефтяного кокса, включающий его измельчение до размера частиц 0,100 мм и выщелачивание, отличающийся тем, что выщелачивание проводят в смеси концентрированных серной и азотной кислот в соотношении 1:1 при температуре от 95 до 105°С при соотношении нефтяного кокса и смеси кислот от 1:3 до 3:1 в течение от 1 до 2 часов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2647725C1

RU 2070940 C1, 03.07.1991
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ НЕФТЯНЫХ КОКСОВ 1988
  • Рюмин А.А.
  • Микшин В.П.
  • Грибков В.В.
SU1616169A1
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ПОТОКА, ОБОГАЩЕННОГО УГЛЕВОДОРОДАМИ И УГЛЕРОДИСТЫМИ ОСТАТКАМИ 2010
  • Бартолини,Андреа
  • Поллесель,Паоло
  • Сентименти,Эмилио
  • Кеккин,Микеле
RU2528290C2
US 4816236 A, 28.03.1989
US 4645651 A, 24.02.1987.

RU 2 647 725 C1

Авторы

Кондрашева Наталья Константиновна

Рудко Вячеслав Алексеевич

Даты

2018-03-19Публикация

2017-06-29Подача