ПОЛИПРОПИЛЕН ДЛЯ ПРИМЕНЕНИЯ В ПЛЕНКАХ Российский патент 2018 года по МПК C08F210/06 C08L23/12 C08L23/14 C08J5/18 B29C49/04 

Описание патента на изобретение RU2648675C2

Настоящее изобретение относится к новому сополимеру пропилена, наряду с неориентированными пленками, полученными из него. Дополнительно настоящее изобретение относится к получению указанного нового сополимера пропилена.

Сополимеры пропилена очень хорошо известны и достаточно часто используются в области получения пленок. В этой технической области требуются полимеры, обладающие комбинацией высокой прозрачности и высокой ударной прочности. Однако очень затруднительно обеспечить соответствие всем этим требованиям, поскольку улучшение одного из свойств полимера достигается за счет других его свойств.

В ЕР 0663422 описывается гетерофазная система, которая смешена с линейным полиэтиленом низкой плотности. Соответственно, эта композиция требует сложной смеси для соответствия требованиям, выдвигаемым в области получения пленок.

В ЕР 1664162 описывается экструзионно-раздувная пленка с улучшенными оптическими свойствами благодаря специфическому выбору нуклеирующего агента. Не рассматривается улучшение свойств благодаря получению специфического сополимера пропилена.

Следовательно, объект настоящего изобретения относится к полипропилену, который позволяет специалисту в области техники, к которой относится настоящее изобретение, получить неориентированную пленку с хорошими оптическими и механическими свойствами экономически эффективным способом.

Находка настоящего изобретения состоит в обеспечении сополимера пропилена с довольно высокой скоростью течения расплава для полимеров в области получения пленок и являющегося монофазным и при этом обладающего от средней до низкой неупорядоченностью.

Соответственно, настоящее изобретение относится к сополимеру пропилена (R-PP) с

(a) содержанием сомономера в пределах от 2,5 до 11,5 мол. %;

(b) скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, в пределах от 1,0 до 16,0 г/10 минут; и

(с) относительным содержанием соединенных в блоки последовательностей этилена (I(E)) в пределах от 45,0 до 69,0%, где I(E) содержание определили при использовании уравнения (I)

где

I(E) - относительное содержание соединенных в блоки последовательностей этилена [в %];

fPEP - молярная фракция последовательностей пропилена/этилена/пропилена (PEP) в образце;

fPEE - молярная фракция последовательностей пропилена/этилена/этилена (РЕЕ) и последовательностей этилена/этилена/пропилена (ЕЕР) в образце;

fEEE - молярная фракция последовательностей этилена/этилена/этилена (ЕЕЕ) в образце,

где все концентрации последовательностей приведены по данным 13С-ЯМР статистического анализа триад.

Предпочтительно сополимер пропилена (R-PP) представляет монофазный. В качестве альтернативы или дополнительно сополимер пропилена (R-PP) предпочтительно не имеет температуру стеклования ниже -20°С (то есть имеет температуру стеклования выше -20°С).

Неожиданно сополимер пропилена (R-PP) по настоящему изобретению имеет высокие ударные и оптические свойства даже при относительно высокой скорости течения расплава MFR2 (230°С).

Следовательно, в одном конкретном варианте воплощения настоящее изобретение относится к неориентированной пленке, содержащей сополимер пропилена (R-PP) по настоящему изобретению. Более предпочтительно настоящее изобретение относится к поливной пленке или экструзионно-раздувной пленке, такой как воздухоохлаждаемая экструзионно-раздувнаяя пленка, содержащей сополимер пропилена (R-PP) по настоящему изобретению.

Далее сополимер пропилена (R-PP) будет описан более подробно.

Как указано выше, сополимер пропилена (R-PP) по настоящему изобретению предпочтительно представляет монофазный. Соответственно, предпочтительно сополимер пропилена (R-PP) не содержит эластомерные (со)полимеры, образующие включения в качестве второй фазы, для улучшения механических свойств. Полимеры, содержащие эластомерные (со)полимеры в качестве вставок второй фазы, будут в противоположность названы гетерофазными и предпочтительно не являются частью настоящего изобретения. Присутствие второй фазы или так называемых включений можно видеть, например, при использовании микроскопии высокого разрешения, такой как электронная микроскопия или атомно-силовая микроскопия, или динамо-механического термического анализа (DMTA). В частности, при использовании DMTA может быть определено присутствие мультифазной структуры за счет наличия по меньшей мере двух различных температур стеклования.

Соответственно, предпочтительно сополимер пропилена (R-PP) по настоящему изобретению не имеет температуру стеклования ниже (то есть имеет температуру стеклования выше) -30, предпочтительно ниже -25°С, более предпочтительно ниже -20°С.

С другой стороны, в одном предпочтительном варианте воплощения настоящего изобретения сополимер пропилена (R-PP) по настоящему изобретению имеет температуру стеклования в пределах от -12 до +2°С, более предпочтительно в пределах от -10 до +2°С.

Сополимер пропилена (R-PP) по настоящему изобретению имеет скорость течения расплава MFR2 (230°С), измеренную согласно ISO 1133, в пределах от 1,0 до 16,0 г/10 минут, более предпочтительно в пределах от 1,0 до 12,0 г/10 минут, еще более предпочтительно в пределах от 5,0 до 11,0 г/10 минут. В случае, когда сополимер пропилена (R-PP) будут использовать в способе получения поливной пленки, скорость течения расплава MFR2 (230°С) предпочтительно составляет в пределах от 6,0 до 16,0 г/10 минут, более предпочтительно в пределах от 7,0 до 11,0 г/10 минут. В свою очередь, в случае, когда сополимер пропилена (R-PP) будут использовать в способе получения экструзионно-раздувной пленки, таком как способ получения воздухоохлаждаемой экструзионно-раздувной пленки, скорость течения расплава MFR2 (230°С) предпочтительно составляет в пределах от 1,0 до 4,0 г/10 минут, более предпочтительно в пределах от 1,5 до 3,5 г/10 минут.

Сополимер пропилена (R-PP) содержит помимо пропилена также сомономеры. Предпочтительно сополимер пропилена (R-PP) содержит помимо пропилена этилен и/или С412 α-олефины. Соответственно, используемый в описании настоящей патентной заявки термин «сополимер пропилена» по настоящему изобретению предпочтительно следует понимать, как полипропилен, содержащий предпочтительно состоящий из единиц, полученных из

(a) пропилена

и

(b) этилена и/или С412 α-олефинов.

Следовательно, сополимер пропилена (R-PP) по настоящему изобретению предпочтительно содержит мономеры, которые сополимеризуются с пропиленом, например, сомономеры, такие как этилен и/или С4-C12 альфа-олефины, в частности этилен и/или С410 альфа-олефины, в частности, этилен и/или С48 α-олефины, например, 1-бутен и/или 1-гексен. Предпочтительно сополимер пропилена (R-PP) включает, по существу состоит из мономеров, сополимеризуемых с пропиленом, из группы, состоящей из этилена, 1-бутена и 1-гексена. Более предпочтительно сополимер пропилена (R-PP) включает помимо пропилена единицы, получаемые из этилена и/или 1-бутена. В предпочтительном варианте воплощения настоящего изобретения сополимер пропилена (R-PP) по настоящему изобретению содержит только единицы, получаемые из этилена и пропилена.

Дополнительно, понятно, что сополимер пропилена (R-PP) предпочтительно имеет содержание сомономера в очень специфических пределах, которые способствуют ударной прочности и хорошим оптическим свойствам. Следовательно, требуется содержание сомономера сополимера пропилена (R-PP), составляющее в пределах от 2,5 до ниже 11,5 мол. %, более предпочтительно в пределах от 3,5 до ниже 11,0 мол. %, более предпочтительно в пределах от 5,5 до ниже 10,5 мол. %, еще более предпочтительно в пределах от 6,5 до 10,0 мол. %.

Дополнительно, сополимер пропилена характеризуется относительным содержанием соединенных в блоки последовательностей этилена (I(E). Содержание I(E) в [%] определили при использовании следующего уравнения (I)

где

I(E) - относительное содержание соединенных в блоки последовательностей этилена [в %];

fPEP - молярная фракция последовательностей пропилена/этилена/пропилена (PEP) в образце;

fPEE - молярная фракция последовательностей пропилена/этилена/этилена (РЕЕ) и последовательностей этилена/этилена/пропилена (ЕЕР) в образце;

fEEE - молярная фракция последовательностей этилена/этилена/этилена (ЕЕЕ) в образце,

где все концентрации последовательностей приведены по данным 13С-ЯМР статистического анализа триад.

Соответственно, предпочтительно сополимер пропилена (R-PP) имеет содержание I(E) в пределах от 45,0 до 69,0%, более предпочтительно в пределах от 50,0 до 68,0%, еще более предпочтительно в пределах от 52,0 до 67,0%.

Дополнительно, сополимер пропилена (R-PP) имеет температуру плавления по меньшей мере 135°С, более предпочтительно в пределах от 135 до 155°С, еще более предпочтительно в пределах от 138 до 150°С, например, в пределах от 138 до 145°С. Дополнительно, предпочтительно сополимер пропилена (R-PP) имеет температуру кристаллизации по меньшей мере 99°С, более предпочтительно в пределах от 99 до 110°С, еще более предпочтительно в пределах от 100 до 108°С, такую как в пределах от 101 до 106 Эти показатели по существу применяют в случае, когда сополимер пропилена (R-PP) не нуклеирован, например, не α-нуклеирован.

Предпочтительно сополимер пропилена (R-PP) имеет содержание фракции, растворимой в холодном ксилоле (XCS), в пределах от 4,0 до 25,0 масс. %, предпочтительно в пределах от 8,0 до 22,0 масс. %, более предпочтительно в пределах от 10,0 до 21,0 масс. %.

Предпочтительно сополимер пропилена (R-PP) имеет распределение молекулярной массы (Mw/Mn) по меньшей мере 2,0, более предпочтительно в пределах от 2,5 до 6,5, еще более предпочтительно в пределах от 2,8 до 5,5.

Дополнительно или в качестве альтернативы, распределение молекулярной массы (Mw/Mn), как указано в предшествующем абзаце, в сополимере пропилена (R-PP) предпочтительно представляет среднемассовую молекулярную массу Mw в пределах от 120 до 700 кг/моль, более предпочтительно в пределах от 150 до 600 кг/моль, такое как в пределах от 180 до 500 кг/моль.

Предпочтительно сополимер пропилена по настоящему изобретению получен в присутствии катализатора Циглера-Натта. Катализатор оказывает влияние, в частности, на микроструктуру полимера. В частности, полипропилены, полученные при использовании металлоценового катализатора, имеют отличающуюся структуру по сравнению с полипропиленами, полученными при использовании катализаторов Циглера-Натта (ZN). Самым значительным отличием является наличие региодефектов в полипропиленах, полученных при использовании металлоцена, чего не наблюдается в случае получения полипропиленов при использовании катализаторов Циглера-Натта (ZN). Региодефекты могут быть трех различных типов, а именно, 2,1-эритро (2,1e), 2,1-трео (2,1t) и 3,1 дефекты. Детальное описание структуры и механизмов образования региодефектов в полипропилене может быть найдено в Chemical Reviews 2000, 100(4), страницы 1316-1327.

Используемый в описании настоящей патентной заявки термин «2,1 региодефекты» относится к сумме 2,1 эритро региодефектов и 2,1 трео региодефектов.

Соответственно, предпочтительно сополимер пропилена (R-PP) по настоящему изобретению имеет содержание 2,1 региодефектов, таких как 2,1 эритро региодефекты, максимально 0,4%, более предпочтительно максимально 0,3%, еще более предпочтительно максимально 0,2%, как определено при использовании 13С-ЯМР спектроскопии. В одном конкретном варианте воплощения настоящего изобретения в сополимере пропилена (R-PP) 2,1 региодефекты, такие как 2,1 эритро региодефекты, не определяются.

Сополимер пропилена (R-PP) предпочтительно содержит по меньшей мере две полимерные фракции, такие как две или три полимерные фракции, каждая из которых представляет сополимер пропилена. Предпочтительно неупорядоченный сополимер пропилена (R-PP) содержит по меньшей мере две различные фракции сополимера пропилена, такие как две различные фракции сополимера пропилена, где дополнительно две фракции сополимера пропилена предпочтительно отличаются по содержанию сомономера.

Предпочтительно одна фракция из двух фракций сополимерного полимера сополимера пропилена (R-PP) представляет фракцию бедную сомономером, а другая фракцию - богатую сомономером, где более предпочтительно бедная фракция и богатая фракция отвечают уравнению (II), более предпочтительно уравнению (IIa), еще более предпочтительно уравнению (IIb),

Lean- бедный

Rich - богатый

где

Со (бедная) - содержание сомономера [мол. %] во фракции сополимера пропилена с низким содержанием сомономера,

Со (богатая) - содержание сомономера [мол. %] во фракции сополимера пропилена с более высоким содержанием сомономера.

Следовательно, в одном варианте воплощения настоящего изобретения первая фракция неупорядоченного сополимера пропилена (R-PP1) имеет более высокое содержание сомономера, чем вторая фракция неупорядоченного сополимера пропилена (R-PP2).

В другом варианте воплощения настоящего изобретения первая фракция неупорядоченного сополимера пропилена (R-PP1) имеет более низкое содержание сомономера, чем вторая фракция неупорядоченного сополимера пропилена (R-PP2). Такой вариант воплощения настоящего изобретения является предпочтительным.

Соответственно, предпочтительно первая фракция неупорядоченного сополимера пропилена (R-PP1) и вторая фракция неупорядоченного сополимера пропилена (R-PP2) вместе отвечают уравнению (III), более предпочтительно уравнению (IIIa), еще более предпочтительно уравнению (IIIb),

где

Co(R-PP1) - содержание сомономера [мол. %] первой фракции сополимера пропилена (R-PP1),

Со (R-PP2) - содержание сомономера [мол. %] второй фракции сополимера пропилена (R-PP2).

По существу предпочтительно сополимер пропилена (R-PP) имеет более высокое содержание сомономера, чем первая фракция неупорядоченного сополимера пропилена (R-РР1). Соответственно, неупорядоченный сополимер пропилен (R-PP) содержит, предпочтительно состоит из первой фракции неупорядоченного сополимера пропилена (R-РР1) и второй фракции неупорядоченного сополимера пропилена (R-PP2), где дополнительно неупорядоченный сополимер пропилен (R-PP) отвечает уравнению (IV), более предпочтительно уравнению (IVa), еще более предпочтительно уравнению (IVb),

где

Со (R-PP1) - содержание сомономера [мол. %] в первой фракции неупорядоченного сополимера пропилена (R-PP1),

Со (R-PP) - содержание сомономера [мол. %] в сополимере пропилена (R-PP).

Следовательно, предпочтительно первая фракция неупорядоченного сополимера пропилена (R-PP1) имеет содержанием сомономера равное или ниже 7,0 мол. %, более предпочтительно в пределах от 1,0 до 6,5 мол. %, еще более предпочтительно в пределах от 2,0 до 6,2 мол. %, такое как в пределах от 3,5 до 6,0 мол. %.

С другой стороны, вторая фракция неупорядоченного сополимера пропилена (R-PP2) предпочтительно имеет содержанием сомономера в пределах от более чем 7,0 до 15,0 мол. %, еще более предпочтительно в пределах от 8,0 до 14,0 мол. %, еще более предпочтительно в пределах от 9,0 до 13,0 мол. %.

Предпочтительно первая фракция неупорядоченного сополимера пропилена (R-PP1) и вторая фракция неупорядоченного сополимера пропилена (R-PP2) имеют по существу одинаковую скорость течения расплава MFR2 (230°С). Соответственно ссылка сделана на скорость течения расплава, обеспеченную для сополимера пропилена (R-PP).

Сомономеры первой фракции сополимера пропилена (R-PP1) и фракции неупорядоченного сополимера пропилена (R-PP2), соответственно, сополимеризующиеся с пропиленом, представляют этилен и/или С412 α-олефины, в частности этилен и/или С48 α-олефины, например, 1-бутен и/или 1-гексен. Предпочтительно первая фракция сополимера пропилена (R-PP1) и вторая фракция сополимера пропилена (R-PP2), соответственно, содержат, по существу состоят из мономеров, сополимеризующихся с пропиленом, из группы, состоящей из этилена, 1-бутена и 1-гексена. В частности, по существу первая фракция сополимера пропилена (R-PP1) и вторая фракция сополимера пропилена (R-PP2), соответственно, содержат помимо пропилена единицы, получаемые из этилена и/или 1-бутена. В предпочтительном варианте воплощения настоящего изобретения первая фракция сополимера пропилена (R-PP1) и вторая фракция сополимера пропилена (R-PP2) идентичные сомономеры, то есть только этилен.

Предпочтительно массовое соотношение между первой фракций сополимера пропилена (R-PP1) и второй фракции сополимера пропилена (R-PP2) составляет от 20/80 до 80/20, более предпочтительно от 30/70 до 70/30, такое как от 35/65 до 65/35.

Сополимер пропилена (R-PP) по настоящему изобретению может содержать вплоть до 5,0 масс. % добавок, таких как α-нуклеирующие агенты и антиоксиданты, наряду с агентами, снижающими трение, и агентами против слипания. Предпочтительно содержание добавок (без α-нуклеирующих агентов) составляет ниже 3,0 масс. %, такое как ниже 1,0 масс. %.

Предпочтительно сополимер пропилена (R-PP) содержит α-нуклеирующий агент. Еще более предпочтительно настоящее изобретение свободно от β-нуклеирующих агентов. Предпочтительно α-нуклеирующий агент выбирают из группы, состоящей из:

(i) соли монокарбоновых кислот и поликарбоновых кислот, например, бензоата натрия или третбутилбензоата алюминия и

(ii) дибензилиденсорбита (например, 1,3:2,4 дибензилиденсорбит) и С18-алкил-замещенных производных дибензилиденсорбита, таких как метилдибензилиденсорбит, этилдибензилиденсорбит или диметилдибензилиденсорбит (например, 1,3:2,4 ди(метилбензилиден) сорбит), или нонит-замещенных производных, таких как 1,2,3,-тридеокси-4,6:5,7-бис-O-[(4-пропилфенил)метилен]-нонит, и

(iii) солей диэфиров фосфорной кислоты, например, натрия 2,2'-метиленбис (4,6,-ди-трет- бутилфенил) фосфата или алюминий-гидрокси-бис[2,2'-метилен-бис(4,6-ди-t-бутилфенил)фосфата] и

(iv) винилциклоалканового полимера и винилалканового полимера (как описано более детально ниже), и

(v) их смесей.

Такие добавки, как правило, коммерчески доступны и описаны, например, в «Plastic Additives Handbook», 5th edition, 2001 of Hans Zweifel.

Предпочтительно сополимер пропилена (R-PP) содержит вплоть до 2,0 масс. % α-нуклеирующего агента. В предпочтительном варианте воплощения настоящего изобретения сополимер пропилена (R-PP) содержит не более чем 3000 чнм, более предпочтительно от 1 до 3000 чнм, более предпочтительно от 5 до 2000 чнм α-нуклеирующего агента, в частности, выбранного из группы, состоящей из дибензилиденсорбита (например, 1,3:2,4 дибензилиденсорбита), производного дибензилиденсорбита, предпочтительно диметилдибензилиденсорбита (например, 1,3:2,4 ди(метилбензилиден) сорбита) или нонит-замещенных производных, таких как 1,2,3,-тридеокси-4,6:5,7-бис-O-[(4-пропилфенил)метилен]-нонит, винилциклоалканового полимера, винилалканового полимера и их смесей.

Настоящее изобретение относится не только к сополимеру пропилена (R-PP) по настоящему изобретению, а также относится к неориентированным пленкам, полученных из них. Соответственно в другом варианте воплощения настоящее изобретение относится к неориентированным пленкам, таким как поливочные пленки или экструзионно-раздувные пленки, например, воздухоохлаждаемые экструзионно-раздувные пленки, содержащие по меньшей мере 70 масс. %, предпочтительно содержащей по меньшей мере 80 масс. %, более предпочтительно содержащей по меньшей мере 90 масс. %, еще более предпочтительно содержащей по меньшей мере 95 масс. %, еще более предпочтительно содержащей по меньшей мере 99 масс. % сополимера пропилена (R-PP) по настоящему изобретению.

Различаются неориентированные и ориентированные пленки (смотрите, например, справочник по полипропиленам polypropylene handbook, Nello Pasquini, 2nd edition, Hanser). Ориентированные пленки, как правило, представляют двухосноориентированные пленки, при этом неориентированные пленки представляют поливочные или экструзионно-раздувные пленки, например, воздухоохлаждаемая экструзионно-раздувная пленка. Соответственно, неориентированную пленку не тянут интенсивно в направлении, продольном машине, и направлении, поперечном машине, как это делают с ориентированными пленками. Следовательно, неориентированная пленка по настоящему изобретению не является двухосноориентированной. Предпочтительно неориентированная пленка по настоящему изобретению представляет поливную плену или экструзионно-раздувную пленку, последняя является предпочтительной. В конкретном варианте воплощения настоящего изобретения неориентированная пленка представляет воздухоохлаждаемую экструзионно-раздувную пленку.

Предпочтительно неориентированная пленка имеет толщину от 5 до 2,000 μм, предпочтительно от 10 до 1,000 μм, более предпочтительно от 20 до 700 μм, такую как от 40 до 500 μм.

Также настоящее изобретение относится к применению сополимера пропилена (R-РР) для получения неориентированных пленок, таких как поливная пленка или экструзионно-раздувная пленка, например, воздухоохлаждаемая экструзионно-раздувная пленка.

В случае, когда неориентированную пленку получают при использовании технологии поливной пленки, расплавленный сополимер полимера (R-PP) экструдируют через матрицу плоскощелевого экструдера на охлаждающий вал для охлаждения полимера для отверждения пленки. Как правило, сополимер пропилена (R-PP) сначала прессуют и ожижают в экструдере, что делает возможным добавление любых добавок в полимер или введение на этой стадии мастербатча. Затем расплав продавливают через плоскую матрицу (щелевую экструзионную головку) и экструдированную пленку наматывают на один или более приемный вал, в это время происходит охлаждение и отверждение. Было установлено, что по существу предпочтительно поддерживать температуру вала или валов, на которых экструдированную пленку, охлаждают и отверждают, в пределах от 10 до 50°С, предпочтительно от 15 до 40°С.

В процессе получения экструзионно-раздувной пленки расплав сополимера пропилена (R-PP) экструдируют через мундштук с кольцеобразным соплом и выдувают рукав из пленки, формованием пузыря, который сдавливают между прижимными валами после отверждения. Предпочтительно экструзию с раздувом проводят при температуре в пределах от 160 до 240°С, и охлаждение проводят водой или охлаждающим газом (обычный воздух) при температуре от 10 до 50°С с образованием мутной линии высотой в от 0,5 до 8 раз больше диаметра матрицы. Коэффициент раздува, как правило, должен составлять в пределах от 1,5 до 4, такой как от 2 до 4, предпочтительно от 2,5 до 3,5.

Сополимер пропилена (R-PP) по настоящему изобретению предпочтительно получают при использовании последовательной полимеризации в присутствии катализатора Циглера-Натта, как указано ниже.

Соответственно, предпочтительно сополимер пропилена (R-PP) получают в присутствии:

(a) катализатора Циглера-Натта (ZN-C), содержащего соединение титана (ТС), соединение магния (МС) и внутренний донор (ID), где указанный внутренний донор (ID) не является сложным эфиром фталевой кислоты,

(b) необязательно сокатализатор (Со), и

(c) необязательно внешний донор(ЕО).

Предпочтительно сополимер пропилена (R-PP), полученный при использовании способа последовательной полимеризации, включающего по меньшей мере два реактора (R1) и (R2), в первом реакторе (R1) получают первую фракцию сополимера пропилена (R-PP1) и затем перемещают во второй реактор (R2), во втором реакторе (R2) вторую фракцию сополимера пропилена (R-PP2) получают в присутствии первой фракции сополимера пропилена (R-PP1).

Используемый в описании настоящей патентной заявки термин «система последовательной полимеризации» указывает на то, что сополимер пропилена (R-PP) получен по меньшей мере в двух реакторах, последовательно соединенных в серию. Соответственно, система полимеризации по настоящему изобретению включает по меньшей мере первый реактор (1st R), второй реактор (2nd R) и необязательно третий реактор (3rd R). Используемый в описании настоящей патентной заявки термин «реактор полимеризации» относится к месту, в котором происходит основная полимеризация. Следовательно, в случае, когда способ состоит из двух реакторов полимеризации, это определение не исключает возможности того, что общая система включает, например, стадию предварительной полимеризации в реакторе предварительной полимеризации. Используемый в описании настоящей патентной заявки термин «состоит из» относится только к закрытой формулировке, с точки зрения реакторов основной полимеризации.

Предпочтительно по меньшей мере один из двух реакторов полимеризации (R1) и (R2) представляет газофазный реактор (GPR). Еще более предпочтительно второй реактор полимеризации (R2) и необязательно третий реактор полимеризации (R3) представляют газофазные реакторы (GPRs), то есть первый газофазный реактор (GPR1) и второй газофазный реактор (GPR2). Газофазный реактор (GPR) по настоящему изобретению предпочтительно представляет реактор с псевдоожиженным слоем, реактор с быстрым псевдоожиженным слоем, реактор с неподвижным слоем или любую их комбинацию.

Соответственно, первый реактор полимеризации (R1) предпочтительно представляет суспензионный реактор (SR) и может представлять любой реактор непрерывного действия или простой реактор с мешалкой периодического действия, или циркуляционный реактор для проведения полимеризации в массе или в суспензии. В массе - означает полимеризацию в реакционной среде, включающей по меньшей мере 60% (масса/масса) мономера. В настоящем изобретении суспензионный реактор (SR) предпочтительно представляет (для полимеризации в массе) циркуляционный реактор (LR). Соответственно, средняя концентрация сополимера пропилена (R-PP), то есть первая фракция (1st F) сополимера пропилена (R-PP) (то есть первая фракция сополимера пропилена (R-PP1)), в полимерной суспензии в циркуляционном реакторе (LR), как правило, составляет от 15 масс. % до 55 масс. % от общей массы полимерной суспензии в циркуляционном реакторе (LR). В одном предпочтительном варианте воплощения настоящего изобретения средняя концентрация первой фракции сополимера пропилена (R-PP1) в полимерной суспензии в циркуляционном реакторе (LR) составляет от 20 масс. % до 55 масс. % и более предпочтительно от 25 масс. % до 52 масс. % от общей массы полимерной суспензии в циркуляционном реакторе (LR).

Предпочтительно сополимер пропилена первого реактора полимеризации (R1), то есть первая фракция сополимера пропилена (R-PP1), более предпочтительно полимерная суспензия в циркуляционном реакторе (LR), содержащем первую фракцию сополимера пропилена (R-PP1), напрямую подается во второй реактор полимеризации (R2), то есть в (первый) газофазный реактор (GPR1), без стадии испарения (flash step) между стадиями. Такой тип прямой подачи описан в ЕР 887379 А, ЕР 887380 А, ЕР 887381 А и ЕР 991684 А. Используемый в описании настоящей патентной заявки термин «прямая подача» относится к способу, когда содержимое первого реактора полимеризации (R1), то есть первого циркуляционного реактора (LR), полимерную суспензию, содержащую первую фракцию сополимера пропилена (R-PP1), подают непосредственно на следующую стадию в газофазный реактор.

В качестве альтернативы, сополимер пропилена из первого реактор полимеризации (R1), то есть первая фракция сополимера пропилена (R-PP1), более предпочтительно полимерная суспензия из циркуляционного реактора (LR), содержащая первую фракцию сополимера пропилена (R-PP1), также может быть подана напрямую на стадию испарения или дополнительно на стадию концентрирования перед подачей во второй реактор полимеризации (R2), то есть в газофазный реактор (GPR). Соответственно, используемый в описании настоящей патентной заявки термин «непрямая подача» относится к способу, при котором содержимое первого реактора полимеризации (R1), циркуляционного реактора (LR), то есть полимерную суспензию подают во второй реактор полимеризации (R2), в (первый) газофазный реактор (GPR1), при использовании устройства для отделения реакционной среды, и реакционную среду удаляют из устройства для отделения в виде газа.

В частности, по существу второй реактор полимеризации (R2), и любой последующий реактор, например третий реактор полимеризации (R3), предпочтительно представляет газофазный реактор (GPRs). Такие газофазные реакторы (GPR) могут представлять любые реакторы с механическим перемешиванием или реакторы с псевдоожиженным слоем. Предпочтительно газофазные реакторы (GPR) включают реактор с псевдоожиженным слоем с механическим перемешиванием со скоростью потока газа по меньшей мере 0,2 м/секунду. Следовательно, понятно, что газофазный реактор представляет реактор с псевдоожиженным слоем предпочтительно с механической мешалкой.

Следовательно, в предпочтительном варианте воплощения настоящего изобретения первый реактор полимеризации (R1) представляет суспензионный реактор (SR), такой как циркуляционный реактор (LR), при этом второй реактор полимеризации (R2), третий реактор полимеризации (R3) и необязательные последующие реакторы полимеризации представляют газофазные реакторы (GPR). Соответственно, в способе по настоящему изобретению используют по меньшей мере три (R1, R2 и R3), предпочтительно три реактора полимеризации (R1, R2 и R3), а именно, суспензионный реактор (SR), такой как циркуляционный реактор (LR), первый газофазный реактор (GPR-1) и второй газофазный реактор (GPR-2), объединенные в серию. Согласно настоящему изобретению перед суспензионным реактором (SR) располагают реактор предварительной полимеризации.

Как указано выше, катализатор Циглера-Натта (ZN-C) подают в первый реактор полимеризации (R1) и затем перемещают с полимером (суспензия), полученным в первом реакторе полимеризации (R1), в последующие реакторы. В случае, когда в способе также используют стадию предварительной полимеризации, предпочтительно каждый из катализатора Циглера-Натта (ZN-C) подают в реактор предварительной полимеризации. Затем продукт предварительной полимеризации, содержащий катализатора Циглера-Натта (ZN-C), перемещают в первый реактор полимеризации (R1).

Предпочтительный многостадийный способ представляет способ «циркуляционно-газофазный», такой как предложенный Borealis A/S, Denmark (известный, как технология BORSTAR®), описанный, например, в патентной литературе, такой как ЕР 0887379, WO 92/12182, WO 2004/000899, WO 2004/111095, WO 99/24478, WO 99/24479 или в WO 00/68315.

Дополнительный, подходящий суспензионно-газофазный способ представляет способ Spheripol® Basell.

Особенно хорошие результаты достигаются в случае тщательного подбора температур в реакторах.

Соответственно, предпочтительно рабочая температура в первом реакторе полимеризации (R1) составляет в пределах от 62 до 85°С, более предпочтительно в пределах от 65 до 82°С, еще более предпочтительно в пределах от 67 до 80°С.

В качестве альтернативы или дополнительно к предшествующему абзацу, предпочтительно рабочая температура во втором реакторе полимеризации (R2) и необязательно в третьем реакторе (R3) составляет в пределах от 75 до 95°С, более предпочтительно в пределах от 78 до 92°С.

Предпочтительно рабочая температура во втором реакторе полимеризации (R2) равна или более высокая, чем рабочая температура в первом реакторе полимеризации (R1). Соответственно, предпочтительно рабочая температура

(a) в первом реакторе полимеризации (R1) составляет в пределах от 62 до 85°С, более предпочтительно в пределах от 65 до 82°С, еще более предпочтительно в пределах от 67 до 80°С, такую как от 67 до 75°С, например, 70°С;

и

(b) во втором реакторе полимеризации (R2) составляет в пределах от 75 до 95°С, более предпочтительно в пределах от 78 до 92°С, еще более предпочтительно в пределах от 78 до 88°С,

при условии, что рабочая температура во втором реакторе полимеризации (R2) равна или более высокая, чем рабочая температура в первом реакторе полимеризации (R1).

Еще более предпочтительно рабочая температура в третьем реакторе полимеризации (R3), если он присутствует, более высокая, чем рабочая температура в первом реакторе полимеризации (R1). В одном конкретном варианте воплощения настоящего изобретения рабочая температура третьего реактора полимеризации (R3), если он присутствует, более высокая, чем рабочая температура в первом реакторе полимеризации (R1) и во втором реакторе полимеризации (R2). Соответственно, предпочтительно рабочая температура

(a) в первом реакторе полимеризации (R1) составляет в пределах от 62 до 85°С, более предпочтительно в пределах от 65 до 82°С, еще более предпочтительно в пределах от 67 до 80°С, такую как от 67 до 75°С, например, 70°С;

(b) во втором реакторе полимеризации (R2) составляет в пределах от 75 до 95°С, более предпочтительно в пределах от 78 до 92°С, еще более предпочтительно в пределах от 78 до 88°С,

и

(c) в третьем реакторе полимеризации (R3), если он присутствует, составляет в пределах от 75 до 95°С, более предпочтительно в пределах от 78 до 92°С, еще более предпочтительно в пределах от 85 до 92°С, такую как в пределах от 87 до 92°С,

при условии, что рабочая температура во втором реакторе полимеризации (R2) равна или более высокая, чем рабочая температура в первом реакторе полимеризации (R1) и

при условии, что в третьем реакторе полимеризации (R3) температура более высокая, чем рабочая температура в первом реакторе полимеризации (R1), предпочтительно более высокая, чем рабочая температура в первом реакторе полимеризации (R1) и во втором реакторе полимеризации (R2).

Как правило, давление в первом реакторе полимеризации (R1), предпочтительно в циркуляционном реакторе (LR), составляет в пределах от 20 до 80 бар, предпочтительно от 30 до 70 бар, такое как от 35 до 65 бар, при этом давление во втором реакторе полимеризации (R2), то есть в (первом) газофазном реакторе (GPR-1), и необязательно в любом последующем реакторе, таком как в третьем реакторе полимеризации (R3), например, во втором газофазном реакторе (GPR-2), составляет в пределах от 5 до 50 бар, предпочтительно от 15 до 40 бар.

Предпочтительно добавляют в каждый реактор водород для контроля молекулярной массы, то есть скорости течения расплава MFR2.

Предпочтительно среднее время пребывания в реакторах полимеризации (R1) и (R2) относительно длительное. Как правило, среднее время пребывания (τ) определяют, как соотношение объема реакционной смеси (VR) к объемной скорости выхода из реактора (Qo) (то есть VR/Qo), то есть τ=VR/Qo [τ=VR/Qo]. В случае циркуляционного реактора объем реакционной смеси (VR) равен объему реактора.

Соответственно, среднее время пребывания (τ) в первом реакторе полимеризации (R1) предпочтительно составляет по меньшей мере 20 минут, более предпочтительно в пределах от 20 до 45 минут, еще более предпочтительно в пределах от 25 до 45 минут, такое как в пределах от 28 до 40 минут, и/или среднее время пребывания (τ) во втором реакторе полимеризации (R2) предпочтительно составляет по меньшей мере 90 минут, более предпочтительно в пределах от 90 до 220 минут, еще более предпочтительно в пределах от 100 до 210 минут, еще более предпочтительно в пределах от 105 до 200 минут, такое как в пределах от 105 до 190 минут. Предпочтительно среднее время пребывания (τ) в третьем реакторе полимеризации (R3), если он присутствует, предпочтительно составляет по меньшей мере 30 минут, более предпочтительно в пределах от 30 до 90 минут, еще более предпочтительно в пределах от 40 до 80 минут, такое как в пределах от 50 до 80 минут.

Дополнительно, предпочтительно среднее время пребывания (τ) во всей системе последовательной полимеризации, более предпочтительно среднее время пребывания (τ) в первом (R1), втором реакторе полимеризации (R2) и необязательно третьем реакторе полимеризации (R3) вместе составляет по меньшей мере 140 минут, более предпочтительно по меньшей мере 150 минут, еще более предпочтительно в пределах от 140 до 240 минут, более предпочтительно в пределах от 150 до 220 минут, еще более предпочтительно в пределах от 155 до 220 минут.

Как указано выше, способ по настоящему изобретению может включать дополнительно к (основной) полимеризации сополимера пропилена (R-PP) по меньшей мере в двух реакторах полимеризации (R1, R3 и необязательном R3) предшествующую им предварительную полимеризацию в реакторе предварительной полимеризации (PR) по технологической линии выше первого реактора полимеризации (R1).

В реакторе предварительной полимеризации (PR) получают полипропилен (Pre-РР). Предварительную полимеризацию проводят в присутствии катализатора Циглера-Натта (ZN-С). Согласно этому варианту воплощения настоящего изобретения катализатор Циглера-Натта (ZN-C), сокатализатор (Со), и внешний донор (ED) - все вводят на стадии предварительной полимеризации. Однако это не исключает возможности того, что на более поздней стадии в процессе полимеризации добавляют, например, дополнительно сокатализатор (Со) и/или внешний донор (ED), например, в первый реактор (R1). В одном варианте воплощения настоящего изобретения катализатора Циглера-Натта (ZN-C), сокатализатор (Со) и внешний донор (ED) добавляют только в реактор предварительной полимеризации (PR), если проводят предварительную полимеризацию.

Как правило, реакцию предварительной полимеризации проводят при температуре от 0 до 60°С, предпочтительно от 15 до 50°С и более предпочтительно от 20 до 45°С.

Давление в реакторе предварительной полимеризации не является критичным показателем, но должно быть достаточно высоким для поддержания реакционной смеси в жидкой фазе. Следовательно, давление может составлять от 20 до 100 бар, например, от 30 до 70 бар.

В предпочтительном варианте воплощения настоящего изобретения предварительную полимеризацию проводят как полимеризацию суспензии в массе в жидком пропилене, то есть жидкая фаза главным образом содержит пропилен с необязательными инертными компонентами, растворенными в нем. Дополнительно, согласно настоящему изобретению осуществляют подачу этилена во время предварительной полимеризации, как указано выше.

Также на стадии предварительной полимеризации возможно добавление других компонентов. Соответственно, на стадии предварительной полимеризации также может быть введен водород для контроля молекулярной массы полипропилена (Pre-РР), как известно специалисту в области техники, к которой относится настоящее изобретение. Дополнительно, для предотвращения адгезии частиц друг с другом и стенками реактора могут быть добавлены антистатические добавки.

Точный контроль условий предварительной полимеризации и параметров реакции находится в компетенции специалиста в области техники, к которой относится настоящее изобретение.

В виду указанных выше условий процесса предварительной полимеризации в реакторе предварительной полимеризации (PR) предпочтительно получают смесь (MI) катализатора Циглера-Натта (ZN-C) и полипропилена (Pre-РР). Предпочтительно катализатор Циглера-Натта (ZN-C) (тонко) диспергирован в полипропилене (Pre-РР). Другими словами, частицы катализатора Циглера-Натта (ZN-C), введенного в реактор предварительной полимеризации (PR), расщепляются на более мелкие фрагменты, которые равномерно распределены в растущем полипропилене (Pre-РР). Размеры вводимых частиц катализатора Циглера-Натта (ZN-C) наряду с полученными фрагментами не имеют существенного значения для настоящего изобретения и находятся в компетенции специалиста в области техники, к которой относится настоящее изобретение.

После указанной предварительной полимеризации смесь (MI) катализатора Циглера-Натта (ZN-C) и полипропилена (Pre-РР), полученную в реакторе предварительной полимеризации (PR), подают в первый реактор (R1). Как правило, общее количество полипропилена (Pre-РР) в конечном полипропилене (РР) достаточно низкое и, как правило, составляет не более чем 5,0 масс. %, более предпочтительно не более чем 4,0 масс. %, еще более предпочтительно в пределах от 0,5 до 4,0 масс. %, такое как в пределах от 1,0 до 3,0 масс. %.

В случае, когда не проводят предварительную полимеризацию, пропилен и другие ингредиенты, такие как катализатор Циглера-Натта (ZN-C), напрямую подают в первый реактор полимеризации (R1).

Соответственно, способ по настоящему изобретению включает следующие стадии при указанных выше условиях:

(a) в первом реакторе полимеризации (R1), то есть в циркуляционном реакторе (LR), полимеризуют пропилен и сомономер, представляющий этилен и/или С412 α-олефин, предпочтительно пропилен и этилен, с получением первой фракции сополимера пропилена (R-PP1) сополимера пропилена (R-PP),

(b) перемещение указанной первой фракции сополимера пропилена (R-PP1) во второй реактор полимеризации (R2),

(c) во втором реакторе полимеризации (R2) полимеризуют пропилен и сомономер, представляющий этилен и/или С412 α-олефин, предпочтительно пропилен и этилен, в присутствии первой фракции сополимера пропилена (R-PP1) с получением второй фракции сополимера пропилена (R-PP2) сополимера пропилена (R-PP), указанная первая фракция сополимера пропилена (R-PP1) и указанная вторая фракция сополимера пропилена (R-PP2) образуют сополимер пропилена (R-PP).

Указанную выше стадию предварительной полимеризации проводят перед стадией (а).

Катализатора Циглера-Натта (ZN-C), внешний донор (ЕР) и сокатализатор (Со)

Как указано выше, в конкретном указанном выше способе получения сополимера пропилена (R-PP) должен быть использован указанный выше катализатор Циглера-Натта (ZN-C). Соответственно, далее будет описан детально катализатор Циглера-Натта (ZN-C).

Используемый в настоящем изобретении катализатор представляет твердый катализатора Циглера-Натта (ZN-C), который содержит соединение титана (ТС), соединение магния (МС) и внутренний донор (ID), где указанный внутренний донор (ID) не является сложным эфиром фталевой кислоты, наиболее предпочтительно не является сложным диэфиром фталевой двухосновной карбоновой кислоты, как более детально описано ниже. Следовательно, катализатор, используемый в настоящем изобретении, полностью свободен от нежелательных фталевых соединений.

Дополнительно катализатора Циглера-Натта (ZN-C) может быть определен способом его получения. Соответственно, катализатор Циглера-Натта (ZN-C) предпочтительно получен способом, включающим следующие стадии:

a) обеспечение раствора по меньшей мере одного комплекса (А), представляющего комплекс соединения магния (МС) и спирта, дополнительно содержащий к гидроксильной группе по меньшей мере одну дополнительную кислородсодержащую группу (A1), отличающуюся от гидроксильной, и необязательно по меньшей мере один комплекс (В), представляющий комплекс указанного соединения магния (МС) и спирта, не содержащий какой-либо другой кислородсодержащей группы (В1),

b) комбинирование указанного раствора с соединением титана (ТС) и получение эмульсии диспергированной фазы, которая содержит более чем 50 мол. % магния;

c) перемешивание эмульсии для сохранения капель, указанной диспергированной фазы предпочтительно со средним размером в пределах от 5 до 200 μм;

d) отверждение указанных капель диспергированной фазы;

e) удаление отвержденных частиц олефинового компонента катализатора полимеризации,

и где внутренний донор (ID) добавляют на любой стадии перед стадией с) и указанный внутренний донор (ID) не является сложным эфиром фталевой кислоты, предпочтительно указанный внутренний донор (ID) не является сложным диэфиром фталевой двухосновной карбоновой кислоты, как описано более детально ниже.

Детальное описание получения катализатора Циглера-Натта (ZN-C) может быть найдено в описании WO 2012/007430.

В предпочтительном варианте воплощения настоящего изобретения на стадии а) раствор комплекса соединения магния (МС) представляет смесь комплексов соединения магния (МС) (комплексы (А) и (В)).

Комплексы соединения магния (МС) (комплексы (А) и (В)) могут быть получены на первой стадии способа получения катализатора реагированием указанного соединения магния (МС) со спиртом(ами), как указано выше и более детально ниже, или указанные комплексы могут быть получены раздельным получением комплексов, или они даже могут представлять коммерчески доступные в виде готовых комплексов и использоваться как таковые в способе получения катализатора по настоящему изобретению. В случае, когда смесь комплексов соединения магния (МС) (комплексы (А) и (В)) получают in situ на первой стадии способа получения катализатора, их предпочтительно получают реагированием указанного соединения магния (МС) со смесью спиртов (A1) и (В1).

Предпочтительно спирт (A1) содержит дополнительно к гидроксильной группе по меньшей мере одну кислородсодержащую группу отличную от гидроксильной группы, используемой согласно настоящему изобретению и представляющей спирт, содержащий группу простого эфира.

Иллюстрирующие примеры таких предпочтительных спиртов (A1), содержащих дополнительно к гидроксильной группе по меньшей мере одну дополнительную кислородсодержащую группу, используемый согласно настоящему изобретению, представляют моноэфиры гликоля, в частности С24 моноэфиры гликоля, такие как моноэфиры этилен- или пропиленгликоля где эфирные группы содержат от 2 до 18 атомов углерода, предпочтительно от 4 до 12 атомов углерода. Предпочтительные моноэфиры представляют С24 моноэфиры гликоля и их производные. Иллюстрирующие и предпочтительные примеры представляют 2-(2-этилгексилокси)этанол, 2-бутилокси этанол, 2-гексилокси этанол и 1,3-пропилен-гликоль-монобутил простой эфир, 3-бутокси-2-пропанол, с 2-(2-этилгексилокси)этанол и 1,3-пропилен-гликоль-монобутил простым эфиром, по существу предпочтительным является 3-бутокси-2-пропанол.

В случае, когда используют смесь комплексов (А) и (В) (или спиртов (A1) и (В1) соответственно), то, как правило, различные комплексы и спирты используют в молярном соотношении А:В, или А1:В1 от 1,0:10 до 1,0:0,5, предпочтительно это молярное соотношение составляет от 1,0:8,0 до 1,0:1,0, более предпочтительно от 1,0:6,0 до 1,0:2,0, еще более предпочтительно от 1,0:9,0 до 1,0:3,0. Как указано в приведенных выше соотношениях, более предпочтительно количество спирта A1, предпочтительно спирта с группой простого эфира, более высокое чем спирта В1, то есть спирта без какой-либо другой кислородсодержащей группы, отличающейся от гидроксильной.

Внутренний донор (ID), используемый при получении катализатора Циглера-Натта (ZN-C), предпочтительно выбирают из сложных (ди)эфиров не фталевых двухосновных карбоновых кислот и их производных и смесей. Группы сложных эфиров, то есть группы, полученные из спирта (то есть алкокси группа сложного эфира), могут быть идентичными или отличающимися, предпочтительно эти группы сложного эфира идентичны. Как правило, эфирные группы представляют группы алифатических или ароматических углеводородов. Их предпочтительными примерами являются линейные или разветвленные алифатические группы с от 1 до 20 атомов углерода, предпочтительно от 2 до 16 атомов углерода, более предпочтительно от 2 до 12 атомов углерода, или ароматические группы с от 6 до 12 атомов углерода, необязательно содержащие гетероатомы групп 14-17 Периодической Таблицы IUPAC, в частности N, О, S и/или Р. Кислотная группа ди- или одноосновной кислоты(ди)эфира, предпочтительно диэфира дикислоты, предпочтительно содержит от 1 до 30 атомов углерода, более предпочтительно от 2 до 20 атомов углерода, еще более предпочтительно от 2 до 16 атомов углерода, необязательно замещенных ароматическим или насыщенным или ненасыщенным циклическим или алифатическим нециклическим углеводородным остатком с от 1 до 20 С, предпочтительно от 1 до 10 атомов углерода и необязательно содержащие гетероатомы групп 14-17 Периодической Таблицы IUPAC, в частности N, О, S и/или Р. По существу предпочтительными сложными эфирами являются сложные диэфиры мононенасыщенных двухосновных карбоновых кислот.

В частности, предпочтительными сложными эфирами являются эфиры, принадлежащие к группе, состоящей из малонатов, маленатов, сукцинатов, глутаратов, циклогексен-1,2-дикарбоксилатов и бензоатов, необязательно замещенных, как указано ниже, и любых их производных и/или смесей. Предпочтительные примеры представляют, например, замещенные малеаты и цитраконаты, наиболее предпочтительно цитраконаты.

Внутренний донор (ID) или его предшественник, как дополнительно указано ниже, предпочтительно добавляют на стадии а) в указанный раствор.

Используемые в качестве внутренних доноров (ID) сложные эфиры могут быть получены, как хорошо известно из предшествующего уровня. Например, сложные эфиры двухосновных карбоновых кислот могут быть получены простой реакцией ангидрида двухосновных карбоновых кислот с С120 алканолом и/или диолом.

Предпочтительным соединением титана (ТС) является галогенид титана, такой как TiCl4.

Комплексы соединений магния могут представлять алкоксисоединения магния, предпочтительно выбранные из группы, состоящей из диалкоксидов магния, и комплексов дигалогенида магния и диалкоксида магния. Они могут представлять продукт реакции спирта и соединения магния, выбранного из группы, состоящей из соединений диалкилов магния, алкоксидов алкильных соединений магния и галогенидов алкильных соединений магния, предпочтительно диалкильных соединений магния. Дополнительно, они могут быть выбраны из группы, состоящей из диалкилоксильных соединений магния, диарилоксильных соединений магния, галогенидов алкилоксильных соединений магния, галогенидов арилоксильных соединений магния, алкоксидов алкильных соединений магния, алкоксидов арильных соединений магния и арилоксидов алкильных соединений магния.

Диалкоксиды магния могут быть продуктами реакции диалкильных соединений магния формулы R2Mg, где каждый из двух R является подобным или отличным от С120 алкила, предпочтительно подобным или отличным от С210 алкила со спиртами, как приведено в описании настоящей патентной заявки. Типичные алкильные соединения магния являются этилбутилом магния, дибутилом магния, дипропилом магния, пропилбутилом магния, дипентилом магния, бутилпентилом магния, бутилоктилом магния и диоктилом магния. Наиболее предпочтительно, если один из R формулы R2Mg является бутильной группой, а другой R - октальной группой, то есть диалкильное соединение магния является бутилоктилом магния или бутилэтилом магния.

При применении алкил-алкоксильных соединений магния RMgOR типичными являются бутоксид этилмагния, пентоксид бутилмагния, бутоксид октилмагния и октоксид октилмагния.

Дополнительно к спирту, содержащему дополнительно к гидроксильной группе по меньшей мере одну кислородсодержащую группу, отличную от приведенной в описании настоящей патентной заявки указанной выше гидроксильной группы, диалкильные или алкильные соединения алкоксида магния могут реагировать с одноатомным спиртом R'OH или его смесью с многоатомным спиртом R'(OH)m.

Предпочтительные одноатомные спирты представляют спирты с формулой Rb(OH), где Rb является С120, предпочтительно C412, и наиболее предпочтительно С610 линейным или разветвленным алкильным остатком или С612 арильным остатком. Предпочтительные одноатомные спирты включают метанол, этанол, n-пропанол, изопропанол, n-бутиловый спирт, изобутиловый спирт, секбутиловый спирт, третбутиловый спирт, n-амиловый спирт, изоамиловый спирт, секамиловый спирт, третамиловый спирт, диэтил - карбинол, секизоамиловый спирт, третбутил - карбинол, 1-гексиловый спирт, 2-этил-1-бутиловый спирт, 4-метил-2-пентиловый спирт, 1-гептиловый спирт, 2-гептиловый спирт, 4-гептиловый спирт, 2,4-диметил-3-пентиловый спирт, 1-октиловый спирт, 2-октиловый спирт, 2-этил- 1-гексиловый спирт, 1-нониловый спирт, 5-нониловый спирт, диизобутил - карбинол, 1-дециловый спирт и 2,7-диметил-2-октиловый спирт, 1-ундециловый спирт, 1-додециловый спирт, 1-тридециловый спирт, 1-тетрадециловый спирт, 1-пентадециловый спирт, 1-гексадециловый спирт, 1-гептадециловый спирт 1-октадециловый спирт и феноловый или бензиловый спирт. Необязательно алифатические одноатомные спирты могут быть ненасыщенными при условии, что они не действуют, как католитические яды. Наиболее предпочтительным одноатомным спиртом является 2-этил-1-гексиловый спирт.

Предпочтительные многоатомные спирты представляют спирты с формулой Ra(OH)m, где Ra является линейным, циклическим или разветвленным С26 углеводородным остатком, (ОН) является гидроксильной группой углеводородного остатка, и m является целым числом от 2 до 6, предпочтительно от 3 до 5. По существу предпочтительные многоатомные спирты включают этиленгликоль, пропиленгликоль, триметиленгликоль, 1,2-бутиленгликоль, 1,3-бутиленгликоль, 1,4-бутиленгликоль, 2,3-бутиленгликоль, 1,5-пентандиол, 1,6-гександиол, 1,8-октандиол, пинакол, диэтиленгликоль, триэтиленгликоль, 1,2-катехол, 1,3-катехол и 1,4-катехол и триолы, такие как глицерин, метилолпропан и пентаэритритол.

Растворители, используемые для получения катализатора Циглера-Натта (ZN-C), могут быть выбраны из ароматических и алифатических растворителей или их смесей. Предпочтительно растворители представляют ароматические и/или алифатические углеводородные соединения с от 5 до 20 атомов углерода, предпочтительно с 5 до 16, более предпочтительно с 5 до 12 атомов углерода, примеры которых включают бензол, толуол, кумол, ксилол и аналогичное им, предпочтительным является толуол, наряду с пентаном, гексаном, гептаном, октаном и нонаном, включая линейные, разветвленные и циклические соединения, и аналогичное им, по существу предпочтительными являются гексаны и гептаны.

Соединение Mg (МС) как правило составляет от 10 до 50 масс. % раствора указанного выше растворителя. Типичные коммерчески доступные МС растворы составляют 20-40 масс. % растворы в толуоле или гептанах.

Реакция для получения комплекса соединения магния (МС) может быть проведена при температуре от 40° до 70°С.

На стадии b) раствор стадии а), как правило, добавляют в соединение титана (ТС), такое как тетрахлорид титана. Такое добавление предпочтительно проводят при низкой температуре, такой как от -10 до 40°С, предпочтительно от -5 до 20°С, такой как от около - 5°С до 15°С.

Температура на стадиях b) и с), как правило, составляет от -10 до 50°С, предпочтительно от -5 до 30°С, при этом отверждение, как правило, требует нагревания, как будет более детально описано ниже.

Эмульсия, то есть двухфазная система жидкость-жидкость может быть получена во всех вариантах воплощения настоящего изобретения простым перемешиванием и необязательно добавлением (дополнительно) растворителя(ей) и добавок, таких как агент, снижающий турбулентность (ТМА) и/или эмульгирующие агенты, как описано дополнительно ниже.

Получение катализатора Циглера-Натта (ZN-C), используемого в настоящем изобретении, основывается на двух фазной системе жидкость-жидкость, поэтому отсутствует необходимость в отдельных внешних материалах - носителях, таких как силикагель или MgCl2 для получения твердых частиц катализатора.

Частицы катализатора Циглера-Натта (ZN-C) по настоящему изобретению имеют сферическую форму и предпочтительно имеют средний размер от 5 до 500 μм, такой как от 5 до 300 μΜ и в некоторых от 5 до 200 μм, или даже от 10 до 100 μΜ. Эти пределы также применимы к каплям диспергированной фазы указанной эмульсии, принимая во внимание, что размер капли может изменяться (уменьшаться) во время стадии отверждения.

В процессе получения катализатора Циглера-Натта (ZN-C) на промежуточной стадии эмульсия более плотного нерастворимого соединения титан (ТС)/толуол, диспергированного в масляной фазе с молярным соотношением соединения титан (ТС)/магний, как правило, составляющим от 0,1 до 10, уступает масляной дисперсной фазе с молярным соотношением соединения титан (ТС)/магний, составляющим от 10 до 100. Соединением титана (ТС) предпочтительно является TiCl4. Затем эту эмульсию, как правило, перемешивают, необязательно в присутствии стабилизатора эмульсии и/или агента, снижающего турбулентность, для сохранения капель указанной диспергированной фазы, как правило, со средним размером в пределах от 5 до 200 μm. Частицы катализатора получают отверждением указанных частиц диспергированной фазы, например, нагреванием.

Следовательно, по существу в действительности целостный продукт реакции комплекса Mg с соединением титана (ТС), который является предшественником конечного каталитического компонента, становится диспергированной фазой, и проходит через дополнительные стадии технологической обработки с получением конечной формы в виде частиц. Дисперсная фаза, все еще содержащая практически пригодное количество соединения титана (ТС), может быть подвергнута повторно обработке для извлечения этого металла.

Далее для облегчения получения эмульсии и/или стабильности эмульсии способом, известным из предшествующего уровня техники, дополнительно могут быть использованы эмульгирующие агенты/ стабилизаторы эмульсии. Для указанных целей, например, могут быть использованы поверхностно-активные вещества, например, класс на основе акриловых или метакриловых полимеров. Предпочтительно указанные стабилизаторы эмульсии представляют акриловые или метакриловые полимеры, в частности таковые со средним сложным эфиром с боковой цепью длиной более чем 10, предпочтительно более чем 12 атомов углерода и предпочтительно менее чем 30, и предпочтительно от 12 до 20 атомов углерода в боковой цепи сложного эфира. По существу предпочтительными являются неразветвленные С1220 (мет)акрилаты, такие как поли(гексадецил)-метакрилат и поли(октадецил)-метакрилат.

Дополнительно, в некоторых вариантах воплощения настоящего изобретения агент, снижающий турбулентность (ТМА), может быть добавлен в реакционную смесь для улучшения образования эмульсии и сохранения структуры эмульсии. Указанный ТМА агент должен быть инертным и растворимым в реакционной смеси при реакционных условиях, что означает, что полимеры без полярных групп являются предпочтительными, такие как полимеры с линейной или разветвленной алифатической углеродной основной цепью. Указанный ТМА по существу предпочтительно выбирают из α-олефиновых полимеров из α-олефиновых мономеров с длиной цепи от 6 до 20 атомов углерода, таких как полиоктен, полинонен, полидецен, полиундецен или полидодецен или их смеси. Наиболее предпочтительным является полидецен.

ТМА может быть добавлен в эмульсию в количестве, например, от 1 до 1,000 чнм, предпочтительно от 5 до 100 чнм и более предпочтительно от 5 до 50 чнм от общей массы реакционной смеси.

Было обнаружено, что наилучшие результаты получают, когда соединение титан (TC)/Mg в диспергированной фазе имеет молярное соотношение (более плотное масло), составляющее от 1 до 5, предпочтительно от 2 до 4, и молярное соотношение в дисперсной масляной фазы составляет от 55 до 65. Как правило, соотношение молярного соотношения соединения титан (TC)/Mg в диспергированной масляной фазе к таковой в более плотном масле составляет по меньшей мере 10.

Отверждение капель диспергированной фазы нагреванием по существу проводят при температуре от 70 до 150°С, как правило, при температуре от 80 до 110°С, предпочтительно при температуре от 90 до 110°С. Нагревание может быть проведено быстрее или медленнее. По существу под медленным нагревом здесь понимается нагревание со скоростью нагревания около 5°С/минут или менее, и по существу под быстрым нагреванием здесь понимается нагревание, например, 10°С/минут или более. Часто более медленная скорость нагревания предпочтительна для получения хорошей морфологии каталитического компонента.

Продукт-отвержденные частицы могут быть промыты по меньшей мере однократно, предпочтительно по меньшей мере дважды, наиболее предпочтительно по меньшей мере три раза при использовании углеводородного соединения, которое предпочтительно выбирают из ароматических или алифатических углеводородных соединений, предпочтительно при использовании толуола, гептана или пентана. Промывка может быть проведена горячим (например, 90°С) или холодным (комнатная температура) углеводородным соединением или их комбинациями.

Наконец, промытый катализатор Циглера-Натта (ZN-C) извлекают. Он может быть далее подвергнут сушке, такой как выпаривание или мгновенное испарение, азотом или может быть суспендирован в маслянистой жидкости без проведения стадии сушки.

Конечный катализатор Циглера-Натта (ZN-C) предпочтительно находится в форме частиц, как правило, со средним размером в пределах от 5 до 200 μм, предпочтительно от 10 до 100, также возможен размер частиц в пределах от 20 до 60 μм.

Предпочтительно катализатор Циглера-Натта (ZN-C) используют в сочетании с сокатализатором на основе алкильных соединений алюминия и необязательно внешними донорами.

В качестве дополнительного компонента в способе полимеризации по настоящему изобретению предпочтительно присутствует внешний донор (ED). Подходящие внешние доноры (ED) включают определенные силаны, простые эфиры, сложные эфиры, амины, кетоны, гетероциклические соединения и их смеси. По существу предпочтительно применение силанов. Наиболее предпочтительно применение силанов с общей формулой

где Ra, Rb и Rc обозначает углеводородный радикал, в частности алкильную или циклоалкильную группу, и где p и q являются числами в пределах от 0 до 3, а сумма p+q составляет равную или менее 3. Ra, Rb и Rc могут быть выбраны независимо друг от друга и могут представлять идентичные или отличающиеся. Конкретные примеры таких силанов представляют (третбутил)2Si(ОСН3)2, (циклогексил)(метил)Si(ОСН3)2, (фенил)2Si(ОСН3)2 и (циклопентил)2Si(ОСН3)2, или с общей формулой

где R3 и R4 могут представлять идентичные или отличающиеся углеводородные группы с от 1 до 12 атомами углерода.

R3 и R4 могут быть независимо выбраны из группы, состоящей из линейных алифатических углеводородных соединений с от 1 до 12 атомов, разветвленных алифатических или ароматических углеводородных соединений с от 1 до 12 атомами и циклических алифатических углеводородных соединений с от 1 до 12 атомами. По существу предпочтительно, чтобы R3 и R4 были независимо выбраны из группы, состоящей из метила, этила, n-пропила, n-бутила, октила, деканила, изопропила, изобутила, изопентила, третбутила, третамила, неопентила, циклопентила, циклогексила, метилциклопентила и циклогептила.

Более предпочтительно оба R1 и R2 представляют идентичные, еще более предпочтительно оба R3 и R4 представляют этиловую группу.

Дополнительно к катализатору Циглера-Натта (ZN-C) и необязательному внешнему донору (ED) может быть использован сокатализатор. Предпочтительно сокатализатор представляет соединение группы 13 периодической таблицы (IUPAC) (ИЮПАК), например, алюминийорганическое соединение, такое как соединение алюминия, такое как алкильное соединение алюминия, галогенидное соединение алюминия или алкилгалогенидное соединение алюминия. Соответственно, в одном конкретном варианте воплощения настоящего изобретения сокатализатор (Со) представляет триалкилалюминий, такой как триэтилалюминий (TEAL), диалкилалюминий-хлорид или алкилалюминий-хлорид или их смеси. В одном конкретном варианте воплощения настоящего изобретения сокатализатор (Со) представляет триэтилалюминий (TEAL).

Преимущественно триэтилалюминий (TEAL) имеет содержание гидрида алюминия, выраженное как AlH3, менее чем 1,0 масс. % от триэтилалюминия (TEAL). Более предпочтительно содержание гидрида составляет менее чем 0,5 масс. %, и наиболее предпочтительно содержание гидрида составляет менее чем 0,1 масс. %.

Предпочтительно тщательно выбирается соотношение между сокатализатором (Со) и внешним донором (ED) [Co/ED] и/или соотношение между сокатализатором (Со) и переходным металлом (ТМ) [Со/ТМ].

Соответственно,

(а) Молярное соотношение сокатализатора (Со) к внешнему донору (ED) [Co/ED] должно составлять в пределах от 5 до 45, предпочтительно в пределах от 5 до 35, более предпочтительно в пределах от 5 до 25, еще более предпочтительно в пределах от 8 до 20; и необязательно

(b) молярное соотношение сокатализатора (Со) к соединению титана (ТС) [Со/ТС] должно составлять в пределах от выше 40 до 500, предпочтительно в пределах от 50 до 300, еще более предпочтительно в пределах от 60 до 150.

Далее настоящее изобретение будет описано со ссылкой на следующие Примеры.

ПРИМЕРЫ.

1. Методы измерения

Для приведенного выше описания настоящего изобретения, если ясно не указанно иное, наряду с приведенными ниже Примерами применяют следующие определения терминов и методы определения.

Расчет содержания сомономера во второй фракции сополимера пропилена (R-РР2):

где

w(PP1)- масса фракции [в масс. %] первой фракции сополимера пропилена (R-PP1),

w(PP2) - масса фракции [в масс. %] второй фракции сополимера пропилена (R-PP2),

С(РР1) - содержание сомономера [в мол. %] первой фракции неупорядоченного сополимера пропилена (R-PP1),

С(РР) - содержание сомономера [в мол. %] в неупорядоченном сополимере пропилена (R-PP),

С(РР2)- расчетное содержание сомономера [в мол. %] второй фракции неупорядоченного сополимера пропилена (R-PP2).

MFR2 (230°С) измерили согласно ISO 1133 (230°С, нагрузка 2,16 кг).

Количественный анализ микроструктуры при использовании ЯМР спектроскопии.

Количественную спектроскопию ядерно-магнитного резонанса (ЯМР) использовали для оценки содержания сомономера в полимерах и распределения последовательности сомономера в полимерах. Количественный анализ 13С{1Н}ЯМР спектра записывали в состоянии раствора при использовании ЯМР спектрометра Bruker Advance III 400, работающего на частотах в пределах от 400,15 до 100,62 МГц для 1Н и 13С, соответственно. Весь спектр записывают при использовании 13С оптимизированного 10 мм датчика измерения линейных величин при расширенном диапазоне температур при 125°С при использовании во всей пневматике газообразного азота. Около 200 мг материала растворили в 3 мл 1,2-тетрахлорэтана-d2 (TCE-d2) с хром-(III)-ацетилацетонатом (Cr(асас)3) с получением в результате 65 мМ раствора релаксационного агента в растворителе (Singh, G., Kothari, A., Gupta, V., Polymer Testing 28 5 (2009), 475). Для обеспечения однородности раствора после получения начального образца в термоблоке ампулу для ЯМР спектроскопии дополнительно нагревали в печи с круглым вращающимся подом в течение по меньшей мере 1 часа. При установке в магнит ампулу подвергли воздействию 10 Гц. Такая схема была выбрана в первую очередь в виду необходимости высокого разрешения количественного анализа для точного количественного определения содержания этилена. Создали стандартное одноимпульсное возбуждение без использования NOE при оптимизированном угле наклона с 1 секундной задержкой повтора цикла и двухуровневой WALTZ16 схемой развязки (Zhou, Z., Kuemmerle, R., Qiu, X., Redwine, D., Cong, R., Taha, A., Baugh, D. Winniford, В., J. Mag. Reson. 187 (2007) 225; Busico, V., Carbonniere, P., Cipullo, R., Pellecchia, R., Severn, J., Talarico, G., Macromol. Rapid Commun. 2007, 28, 11289). Всего для спектра потребовалось 6144 (6k) импульсов.

Провели количественный анализ на основе 13С{1Н} ЯМР спектра с определенным средним значением и определили соответствующие количественные значения при использовании интеграла с использованием специальных компьютерных программ. Для сополимеров этилен-пропилена все химические сдвиги косвенно указывают на центральную метиленовую группу этиленового блока (ЕЕЕ) при 30,00 чнм при использовании химического сдвига в растворителе. Этот подход позволяет провести сравнение с эталоном даже при отсутствии структурной единицы. Наблюдались характерные сигналы, соответствующие введению этилена Cheng, H.N., Macromolecules 17 (1984), 1950).

Наблюдались характерные сигналы, соответствующие 2,1 эритро региодефектам (приведенные в L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 2000, 100 (4), 1253, in Cheng, H. N., Macromolecules 1984, 17, 1950, and in W-J. Wang and S. Zhu, Macromolecules 2000, 33 1157), требуется коррекция из-за влияния региодефектов на определенные свойства. Не наблюдались характерные сигналы, соответствующие другим типам региодефектов.

Фракцию сомономера количественно оценили при использовании способа Wang et. Al. (Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157) путем интеграции множества сигналов всей спектральной области 13С{1Н} спектра, полученного при заданных условиях. Этот способ был выбран за его точность, надежность и возможность объяснить присутствие региодефектов при необходимости. Интегральные области незначительно регулируют для повышения применяемости к широким пределам содержания сомономеров.

Для систем, где наблюдается только соединенный в блоки этилен в РРЕРР последовательностях, использовали способ Wang et. al., модифицированный для снижения влияния областей ненулевых интегралов, которые, как известно, отсутствуют. Такой подход снижает переоценку содержания этилена для такой системы и позволяет снизить число областей, используемых для определения абсолютного содержания этилена:

E = 0,5(Sββ + Sβγ + Sβδ + 0,5(Sαβ + Sαγ))

При использовании этого ряда областей соответствующее интегральное уравнение становится:

Используются те же обозначения, что и в статье Wang et. al. (Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157). Уравнения, использованные для определения абсолютного содержания пропилена, не модифицировали.

Молярный процент сомономера, введенного в полимер, рассчитывают по молярной фракции согласно:

Е [мол. %]=100*fE

Массовый процент сомономера, введенного в полимер, рассчитывают по молярной фракции согласно:

Е[масс. %]=100*(fE*28,05)/((fE*28,05)+((1-fE)*42,08))

Распределение последовательности сомономера в триадах определяют при использовании метода Kakugo et al. (Kakugo, M, Naito, Y., Mizunuma, K., Miyatake, T. Macromolecules 15 (1982) 1150) путем интеграции множества сигналов всей спектральной области 13С{1Н} спектра, полученного при заданных условиях. Этот способ был выбран за его надежность. Интегральные области незначительно регулируют для повышения применяемости к широким пределам содержания сомономеров.

Относительное содержание соединенного в блоки введенного этилена рассчитали по распределению последовательностей триад при использовании следующего выражения (уравнение (I)):

где

I(E) - относительное содержание выделенных для соединения в блоки последовательностей этилена [в %];

fPEP - молярная фракция последовательностей пропилена/этилена/пропилена (PEP) в образце;

fPEE - молярная фракция последовательностей пропилена/этилена/этилена (РЕЕ) и последовательностей этилена/этилена/пропилена (ЕЕР) в образце;

IEEE - молярная фракция последовательностей этилена/этилена/этилена (ЕЕЕ) в образце

Объемную плотность, BD измерили согласно ASTM D 1895

Распределение размера частиц, PSD

Использовали счетчик Коултера Coulter Counter LS 200 при комнатной температуре с гептаном в качестве среды.

Фракция, растворимая в холодном ксилоле (XCS масс. %): Содержание фракции, растворимой в холодном ксилоле (XCS), определяли при температуре 25°С согласно ISO 16152; первое издание; 2005-07-01.

Среднечисловую молекулярную массу (Mn), среднемассовую молекулярную массу (Mw) и полидисперсность (Mw/Mn)определили при использовании гельпроникающей хроматографии (GPC) следующим методом:

Среднемассовую молекулярную массу Mw и полидисперность (Mw/Mn), где Mn представляет среднечисловую молекулярную массу, a Mw представляет среднемассовую молекулярную массу) измерили при использовании способа, основанного на ISO 16014-1:2003 и ISO 16014-4:2003. Использовали устройство Waters Alliance GPCV 2000 с рефрактометрическим детектором и он-лайн вискозиметром при использовании колонок 3 x TSK-gel (GMHXL-HT) от TosoHaas и 1,2,4-трихлорбензола (ТСВ, стабилизированный 200 мг/л 2,6-ди третбутил-4-метил-фенолом) в качестве растворителя при температуре 145°С и постоянной скорости потока 1 мл/минуту. Для анализа инжектируют 216,5 μл образца раствора. Колонку калибруют при использовании относительной калибровки по узким 19 MWD стандартам полистирола (PS) в пределах от 0,5 кг/моль до 11,500 кг/моль и хорошо изученным широким стандартам полипропилена. Все образцы получают, растворяя в пределах от 5 до 10 мг полимера в 10 мл (при 160°С) стабилизированного ТСВ (такой же, как мобильная фаза) и выдерживают в течение 3 часов с непрерывным перемешиванием перед забором образцов в устройство для GPC.

Дифференциальная сканирующая калориметрия (DSC анализ), температура плавления (Tm) и теплота плавления (Hf), температура кристаллизации (Тс) и теплота кристаллизации (Hc):

Измерили при использовании дифференциальной сканирующей калориметрии (DSC) ТА Instrument Q2000 при использовании образцов от 5 до 10 мг. DSC проводят согласно ISO ISO 11357/ part 3 /method C2 в цикле нагревание /охлаждение/ нагревание при показателе сканирования 10°С/минуту при температуре в пределах от -30 до +225°С. Температуру кристаллизации и теплоту кристаллизации (Hc) определили по стадии охлаждения, при этом температуру плавления и теплоту плавления (Hf) определяют на второй стадии нагревания.

Температуру стеклования Tg определили при использовании динамо-механического термического анализа согласно ISO 6721-7. Измерения провели в режиме крутильных колебаний при использовании образцов, полученных литьем под давлением (40×10×1 мм3) от -100°С до +150°С при скорости нагревания 2°С/минуту и частоте 1 Гц.

Модуль упругости при растяжении измерили в машине при растяжении в поперечном направлении согласно ISO 527-3 при температуре 23°С на воздухоохлаждаемой экструзионно-раздувной пленке толщиной 50 μм, как указано ниже. Тестирование провели при скорости крейцкопфа (протяжки) 1 мм/минуту.

Тест на сбрасывание свободнопадающего груза: Ударную прочность определили при проведении теста на сбрасывание свободного падающего груза (г/50%). Тест на сбрасывание свободнопадающего груза провели при измерении согласно ISO 7765-1, метод «А». Заостренный груз с полусферической головкой диаметром 38 мм сбросили с высоты 0,66 м на закрепленный зажимами образец пленки с образованием отверстия. В случае, когда в образце происходит разрушение, массу груза уменьшают, в случае, когда разрушение не происходит, массу груза увеличивают. Провели тестирование по меньшей мере 20 образцов. Провели расчет при использовании данных массы груза, вызвавшего разрушение после падения 50% случаев повреждения после падения, и эту величину приняли за показатель ударной прочности при сбрасывании (DDI) в (г). Затем рассчитали относительную DDI (г/м) делением DDI на толщину пленки.

Относительная суммарная энергия пробоя:

Ударную прочность пленок определили при использовании метода «Dynatest» согласно ISO 7725-2 при температуре 0°С на воздухопроницаемой экструзионно-раздувной пленке толщиной 50 μм, полученной, как указано ниже. Показатель «Масса пробоя» («Wbreak») [Дж/мм] представляет относительную суммарную энергию пробоя на мм толщины, которую может поглотить пленка прежде, чем произойдет ее разрушение, деленный на толщину пленку. Чем выше этот показатель, тем прочнее материал.

Сопротивление раздиру (определяют, как тест на раздир по Элмендорфу (Н)): Сопротивление раздиру измерили в машине в обоих направлениях, и при растяжении в продольном, и при растяжении в поперечном направлении. Сопротивление раздиру измерили при использовании метода ISO 6383/2. Усилие, требуемое для распространения раздира по образцу пленки, измерили при использовании маятникового устройства. Маятник двигался под действием силы тяжести по дуге, разрывая образец по предварительно сделанному надрезу. С одной стороны образец зафиксирован маятником на другой стороне неподвижным зажимом. Сопротивление раздиру представляет усилие, требуемое для разрыва образца. Затем провели расчет относительного сопротивления раздиру (Н/мм) делением сопротивления раздиру на толщину пленки. Для этого теста использовали воздухоохлаждаемую экструзионно-раздувную пленку толщиной 50 μM, полученную, как указано ниже.

Измерение прозрачности, мутности и светопропускания провели согласно ASTM D1003-00 при использовании воздухоохлаждаемой экструзионно-раздувной пленки толщиной 50 μм, полученной, как указано ниже.

2. Примеры

Катализатор, используемый в процессе полимеризации сополимера пропилена в Примере по настоящему изобретению (IE1), получили, как следующее:

Используемые химические реагенты:

20% раствор в толуоле бутилэтилмагния (Mg(Bu)(Et),BEM) от Chemtura

2-этилгексиловый спирт от Amphochem

3-Бутокси-2-пропанол - (DOWANOL™ PnB) от Dow

бис(2-этилгексил)цитраконат от SynphaBase

TiCl4 от Millenium Chemicals

Толуол от Aspokem

Viscoplex® 1-254 от Evonik

Гептан от Chevron

Получение комплекса Mg

Сначала получили раствор алкоксида магния добавлением при перемешивании мешалкой (70 оборотов в минуту) в 11 кг 20 масс. % раствора в толуоле бутилэтилмагния (Mg(Bu)(Et),BEM) смеси 4,7 кг 2-этилгексилового спирта и 1,2 кг бутоксипропанола в 20 литровой реакторе из нержавеющей стали. Во время добавления поддерживали температуру содержимого реактора ниже 45°С. После добавления перемешали мешалкой (70 оборотов в минуту) реакционную смесь при температуре 60°С в течение 30 минут. После охлаждения до комнатной температуры в раствор алкоксида Mg добавили 2,3 кг донора бис(2-этилгексил)цитраконата с поддержанием температуры ниже 25°С. Провели смешивание в течение 15 минут при перемешивании мешалкой (70 оборотов в минуту).

Получение твердого каталитического компонента

В 20 литровый реактор из нержавеющей стали поместили 20,3 кг TiCl4 и 1,1 кг толуола. При перемешивании мешалкой 350 оборотов в минуту и поддержании температуры 0°С добавили 14,5 кг комплекса Mg по Примеру 1 в течение 1,5 часов. Добавили 1,7 л Viscoplex® 1 -254 и 7,5 кг гептана и через 1 час перемешивания при температуре 0°С получили эмульсию, температуру которой подняли до 90°С в течение 1 часа. Через 30 минут перемешивание остановили, отвердили капли катализатора и осадили частицы катализатора. После осаждения (1 час) откачали жидкий супернатант.

Затем частицы катализатора промыли 45 кг толуола при температуре 90°С в течение 20 минут с двумя последующими промывками гептаном (30 кг, 15 минут). Во время первой промывки гептаном температуру понизили до 50°С, и во время второй промывки температуру понизили до комнатной.

Твердый каталитический компонент использовали вместе с триэтилалюминием (TEAL) в качестве сокатализатора и дициклопентилдиметоксисиланом (D-донор) в качестве донора.

Катализатор, использованный в процессах полимеризации в Сравнительном примере (CEI), представлял катализатор по Части примеров WO 2010009827 A1 (смотрите, страницы 30 и 31) вместе с триэтилалюминием (TEAL) в качестве сокатализатора и дициклопентилдиметоксисиланом (D-донор) в качестве донора.

Соотношение донора к алюминию, соотношение алюминия к титану и условия полимеризации приведены в Таблице 1.

н.о. не определено

* 2nd Tm при температуре 124°С

** Тс IE2 (нуклеированный) 119°С

Пленки для Примеров получили при использовании линии & (W&H) для получения монослойной экструзионно-раздувной пленки (W & Н Varex 60).

Экструдер: Varex Е 60.30D, диаметр цилиндра 60 мм, соотношение длины шнека к диаметру 30, 4 нагреваемых и 3 охлаждаемых зоны

Диаметр матрицы для получения экструзионно-раздувной пленка: 200 мм

Щель матрицы экструдера: 0,8-1,2 мм

Температура экструдера: 230°С

Температура матрицы: 220°С

Производительность: 60 кг/ч

Температура плавления, давление плавления и скорость вращения шнека: смотрите Таблицу 2

BUR: 2,5

Высота мутной линии: 700 мм

Скорость намотки на вал: 14,2 м/минуту

Похожие патенты RU2648675C2

название год авторы номер документа
СОПОЛИМЕР ПРОПИЛЕНА ДЛЯ ТОНКОСТЕННЫХ УПАКОВОК 2014
  • Ванг Джингбо
  • Лильхья Йоханна
  • Гахлеитнер Маркус
RU2652110C2
СТАТИСТИЧЕСКИЙ СОПОЛИМЕР ПРОПИЛЕНА ДЛЯ ПРИМЕНЕНИЯ В ПЛЕНКАХ 2015
  • Ванг Джингбо
  • Хорилл Томас
  • Гахлеитнер Маркус
  • Ваххолдер Макс
  • Аарнио-Винтерхоф Минна
RU2668797C2
МЯГКИЕ И ПРОЗРАЧНЫЕ СОПОЛИМЕРЫ ПРОПИЛЕНА 2017
  • Гахлеитнер, Маркус
  • Ванг, Джингбо
  • Эк, Карл-Густаф
  • Бернреитнер, Клаус
RU2698721C1
СОПОЛИМЕР ПРОПИЛЕНА ДЛЯ БУТЫЛОК, ИЗГОТАВЛИВАЕМЫХ ПНЕВМОФОРМОВАНИЕМ С ЭКСТРУЗИЕЙ 2014
  • Ванг Джингбо
  • Лильхья Йоханна
  • Гахлеитнер Маркус
  • Браун Джулиан
RU2637930C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИПРОПИЛЕНА С ВЫСОКОЙ ПОЛИДИСПЕРСНОСТЬЮ 2014
  • Гахлеитнер Маркус
  • Хафнер Норберт
  • Бернреитнер Клаус
RU2648672C2
ОБОЛОЧКА КАБЕЛЯ 2018
  • Ваннерског Оса
  • Фагрелль Ола Умер
RU2746595C1
МУЛЬТИМОДАЛЬНЫЙ ПОЛИПРОПИЛЕН С УЧЕТОМ СОДЕРЖАНИЯ СОМОНОМЕРА 2014
  • Лампела Джанн
  • Джонсен Жеир
RU2657872C1
ПОЛИПРОПИЛЕН С ЧРЕЗВЫЧАЙНО ШИРОКИМ РАСПРЕДЕЛЕНИЕМ МОЛЕКУЛЯРНОЙ МАССЫ 2014
  • Хафнер Норберт
  • Бернреитнер Клаус
  • Гахлеитнер Маркус
RU2673339C2
ОБОЛОЧКА КАБЕЛЯ 2018
  • Ваннерског Оса
  • Фагрелль Ола
RU2761387C1
КОМПОЗИЦИЯ ГЕТЕРОФАЗНОГО ПОЛИОЛЕФИНА С УЛУЧШЕННЫМИ ОПТИЧЕСКИМИ СВОЙСТВАМИ 2018
  • Ванг, Джингбо
  • Гахлеитнер, Маркус
  • Бергер, Фридрих
  • Фиебиг, Йоахим
  • Вахтери, Маркку
RU2768931C2

Реферат патента 2018 года ПОЛИПРОПИЛЕН ДЛЯ ПРИМЕНЕНИЯ В ПЛЕНКАХ

Изобретение относится к сополимеру пропилена. Сополимер пропилена (R-PP) содержит этилен в пределах 2,5-11,5 мол. %. Скорость течения расплава MFR2, (230°С), измеренная согласно ISO 1133, составляет 1,0-16,0 г/10 минут. Относительное содержание I(E) молярной фракции последовательностей пропилена/этилена/пропилена (PEP) в образце составляет 45,0-69,0%. Содержание I(E) определяют при использовании уравнения (I). Также описан способ получения сополимера пропилена и неориентированная пленка.

Технический результат – получение сополимера пропилена, имеющего высокие ударные и оптические свойства. 3 н. и 12 з.п. ф-лы, 3 табл., 4 пр.

Формула изобретения RU 2 648 675 C2

1. Сополимер пропилена (R-PP) с этиленом в качестве сомономера с

(a) содержанием этилена в пределах от 2,5 до 11,5 мол.%;

(b) скоростью течения расплава MFR2 (230°С), измеренной согласно ISO 1133, в пределах от 1,0 до 16,0 г/10 минут; и

(c) относительным содержанием I(E) молярной фракции последовательностей пропилена/этилена/пропилена (PEP) в образце в пределах от 45,0 до 69,0%, где I(E) содержание определили при использовании уравнения (I)

где

I(E) - относительное содержание молярной фракции последовательностей пропилена/этилена/пропилена (PEP) в образце [в %];

fPEP - молярная фракция последовательностей пропилена/этилена/пропилена (PEP) в образце;

fPEE - молярная фракция последовательностей пропилена/этилена/этилена (РЕЕ) и последовательностей этилена/этилена/пропилена (ЕЕР) в образце;

IEEE - молярная фракция последовательностей этилена/этилена/этилена (ЕЕЕ) в образце,

где все концентрации последовательностей приведены по данным 13С-ЯМР статистического анализа триад.

2. Сополимер пропилена (R-PP) по п. 1, где указанный сополимер пропилена (R-РР) имеет содержание фракции, растворимой в холодном ксилоле, (XCS) в пределах от 4,0 до 25,0 мас. %.

3. Сополимер пропилена (R-PP) по п. 1 или 2, где указанный сополимер пропилена (R-РР) имеет

(а) температуру стеклования в пределах от -12 до +2°С;

или

(b) имеет температуру стеклования выше -20°С.

4. Сополимер пропилена (R-PP) по любому из предшествующих пунктов, где указанный сополимер пропилена (R-PP) имеет

(a) температуру плавления в пределах от 135 до 155°С; и/или

(b) температуру кристаллизации в пределах от 99 до 110°С.

5. Сополимер пропилена (R-PP) по любому из предшествующих пунктов, где указанный сополимер пропилена (R-PP):

(a) имеет содержание 2,1 региодефектов максимально 0,4%, как определено при использовании 13С-ЯМР спектроскопии;

и/или

(b) является монофазным.

6. Сополимер пропилена (R-PP) по любому из предшествующих пунктов, где указанный сополимер пропилена (R-PP) содержит две фракции, первую фракцию сополимера пропилена (R-PP1) и вторую фракцию сополимера пропилена (R-PP2), указанная первая фракция сополимера пропилена (R-PP1) отличается от указанной второй фракции сополимера пропилена (R-PP2) по содержанию этилена.

7. Сополимер пропилена (R-PP) по п. 6, где массовое соотношение между первой фракцией сополимера пропилена (R-PP1) и второй фракцией сополимера пропилена (R-PP2) [(R-PP1):(R-PP2)] составляет от 70:30 до 30:70.

8. Сополимер пропилена (R-PP) по п. 6 или 7, где

(a) первая фракция сополимера пропилена (R-PP1) представляет фракцию бедную этиленом, а вторая фракция сополимера пропилена (R-PP2) представляет фракцию богатую этиленом

и/или

(b) первая фракция сополимера пропилена (R-PP1) имеет более низкое содержание этилена, чем в сополимере пропилена (R-PP).

9. Сополимер пропилена (R-PP) по любому из предшествующих пунктов 6-8, где

(a) первая фракция сополимера пропилена (R-PP1) имеет содержание этилена в пределах от 1,0 до 6,5 мол.% от первой фракции сополимера пропилена (R-PP1);

и/или, предпочтительно и,

(b) вторая фракция сополимера пропилена (R-PP2) имеет содержание этилена в пределах от более чем 7,0 до 15,0 мол.% от второй фракции сополимера пропилена (R-PP2).

10. Сополимер пропилена (R-PP) по любому из пп. 6-9, где

(a) первая фракция неупорядоченного сополимера пропилена (R-PP1) и вторая фракция неупорядоченного сополимера пропилена (R-PP2) вместе отвечают неравенству (III)

где

Co(R-PP1) - содержание этилена [мол.%] первой фракции сополимера пропилена (R-PP1),

Со (R-PP2) - содержание этилена [мол.%] второй фракции сополимера пропилена (R-PP2);

и/или,

(b) первая фракция неупорядоченного сополимера пропилена (R-PP1) и фракция неупорядоченного сополимера пропилена (R-PP) вместе отвечают неравенству (IV)

,

где

Со (R-PP1) - содержание этилена [мол.%] в первой фракции сополимера пропилена (R-PP1),

Со (R-PP) - содержание этилена [мол.%] в сополимере пропилена (R-PP).

11. Неориентированная пленка, содержащая сополимер пропилена по любому из пп. 1-10.

12. Неориентированная пленка по п. 11, где пленка представляет поливную пленку или экструзионно-раздувную пленку, такую как воздухоохлаждаемая экструзионно-раздувная пленка.

13. Способ получения сополимера пропилена (R-PP) по любому из пп. 1-10, где сополимер пропилена (R-PP) получают в присутствии:

(a) катализатора Циглера-Натта (ZN-C), содержащего соединение титана (ТС), соединение магния (МС) и внутренний донор (ID), где указанный внутренний донор (ID) не является сложным эфиром фталевой кислоты,

(b) необязательно сокатализатора (Со), и

(c) необязательно внешнего донора (ED).

14. Способ по п. 13, где

(a) внутренний донор (ID) выбирают из необязательно замещенных малонатов, маленатов, сукцинатов, глутаратов, циклогексен-1,2-дикарбоксилатов, бензоатов и любых их производных и/или смесей, предпочтительно внутренний донор (ID) представляет цитраконат;

(b) молярное соотношение сокатализатора (Со) к внешнему донору (ED) [Co/ED] составляет от 5 до 45.

15. Способ по п. 13 или 14, где сополимер пропилена (R-PP) получают при использовании способа последовательной полимеризации, включающего, по меньшей мере, два реактора (R1) и (R2), в первом реакторе (R1) получают первую фракцию сополимера пропилена (R-PP1) и затем перемещают во второй реактор (R2), во втором реакторе (R2) вторую фракцию сополимера пропилена (R-PP2) получают в присутствии первой фракции сополимера пропилена (R-PP1).

Документы, цитированные в отчете о поиске Патент 2018 года RU2648675C2

КЕРАМИЧЕСКАЯ СМЕСЬ ДЛЯ ПРИМЕНЕНИЯ В ПРОИЗВОДСТВЕ ОГНЕУПОРОВ И СООТВЕТСТВУЮЩИЙ ПРОДУКТ 2005
  • Хармут Харальд
RU2386604C2
УСТАНОВКА ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ СТОКОВ 1991
  • Тумченок Виктор Игнатьевич
RU2065407C1
СПОСОБ ПОЛУЧЕНИЯ СУХОГО ПИЩЕВОГО ПРОДУКТА ИЗ ЛАМИНАРИЕВЫХ ВОДОРОСЛЕЙ 2003
  • Подкорытова А.В.
RU2251361C2
Устройство для перевода стрелок с движущегося вагона 1927
  • Атливанников Д.Л.
SU17360A1
СТАТИСТИЧЕСКИЙ СОПОЛИМЕР ПРОПИЛЕНА, СПОСОБ ЕГО ПОЛУЧЕНИЯ, ИЗДЕЛИЯ ИЗ СОПОЛИМЕРА 2002
  • Яскеляйнен Пирьо
  • Хафнер Норберт
  • Питкянен Пяйви
  • Галяйтнер Маркус
  • Туоминен Олли
  • Тельч Вильфрид
RU2298017C2

RU 2 648 675 C2

Авторы

Ванг Джингбо

Гахлеитнер Маркус

Лильхья Йоханна

Даты

2018-03-28Публикация

2014-05-12Подача