Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования.
Часто плотность теплового потока на электронном компоненте, например, на чипе компьютера, является неоднородной (A. Bar-Cohen, P. Wang, Thermal Management of On-Chip Hot Spot // J. Heat Transfer 134(5), 051017, 2012). На участках более интенсивного тепловыделения жидкостный теплоноситель испаряется быстрее, чем на всем чипе, что может вызывать образование локализованных сухих пятен. Термокапиллярные силы стараются переместить жидкость с более нагретых областей в менее нагретые и усиливают проблему возникновения локального кризиса теплообмена. В случае однородного тепловыделения по поверхности чипа, разрушение и высыхание теплоносителя начинается, как правило, от кромки электронного компонента, что подтверждается многочисленными опытами авторов патента.
В статье (Kabov О.А., Kuznetsov V.V., and Legros J.C., Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment // Proc. of 2nd International Conference on Microchannels and Minichannels, June 17-19, 2004, Rochester, Paper No. ICMM2004-2399, pp. 687-694, 2004) предложено техническое решение, в котором охлаждение электронного компонента основано на движении пленки жидкости под действием вынужденного потока пара или газа.
Наиболее близкое техническое решение описано в статье (Kabov О.А., Lyulin Yu.V., Marchuk I.V. and Zaitsev D.V., Locally heated shear-driven liquid films in microchannels and minichannels, Int. Journal of Heat and Fluid Flow, Vol. 28, p. 103-112, 2007). В данном способе охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, движущейся под действием вынужденного потока газа в канале.
Недостатком этих технических решений является относительно малые величины критического теплового потока, которые можно иметь в данной системе охлаждения при небольших расходах жидкости и газа.
Данный факт объясняется тем, что охлаждение электронного компонента происходит за счет испарения жидкости, которая движется вдоль канала под действием потока газа. Таким образом, чтобы отвести определенное количество тепла, постоянно выделяющегося на электронном компоненте, необходимо испарить определенное количество жидкости. Наиболее оптимальной системой охлаждения является система, в которой G/Gevap=1, где G - массовый расход жидкости на входе в канал, кг/с, G - массовый расход испаряющейся жидкости, кг/с. На практике данное отношение может существенно превышать 1, т.к. на пленку жидкости действуют различные силы -поверхностные, термокапиллярные и др., которые приводят к волнообразованию и неоднородному распределению пленки жидкости по поперечному сечению канала (смотрите, например, Chinnov Е.A., Ron'shin F.V., Kabov О.A. Two-Phase Flow Patterns in Short Horizontal Rectangular Microchannels, International Journal of Multiphase Flow, Vol. 80, pp. 57-68, 2016.).
Задачей заявляемого изобретения является повышение эффективности охлаждения высоконапряженных по тепловым потокам электронных компонентов за счет использования комбинированных пленочных и капельных потоков жидкости.
Поставленная задача решается тем, что в способе охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанном на движении тонкой пленки жидкости за счет потока газа в канале, согласно изобретению, осушенные области электронного компонента орошают потоками микрокапель жидкости с помощью каплеформирователя, расположенного на верхней стенке канала над областями электронного компонента с максимальной плотностью теплового потока, причем истечение микрокапель жидкости осуществляют против направления течения газа под некоторым углом к направлению течения газа (от ~ 10 до 80 градусов, в зависимости от скорости движения газа, а также скорости и размера микрокапель). Истечение микрокапель жидкости осуществляется с таким расчетом, чтобы капли преодолели движущийся поток газа и достигли поверхности электронного компонента в нужной области. Области электронного компонента с максимальной плотностью теплового потока определяются исходя из особенностей архитектуры чипа. В случае однородного тепловыделения по поверхности чипа, микрокапли жидкости направляются в область нижней по потоку кромки чипа, где возникают первые сухие пятна.
Поступающие микрокапли жидкости препятствуют осушению поверхности электронного компонента, увеличивают критический тепловой поток и в целом увеличивают эффективность охлаждения высоконапряженных по тепловым потокам электронных компонент за счет использования комбинированных пленочных и капельных потоков жидкости.
Необходимо отметить, что за счет комбинации трех видов охлаждения: газ; пленка жидкости; микрокапли жидкости в предложенной системе достигается высокая надежность и одновременно экономия энергоресурсов - электрической мощности на прокачку теплоносителей. Такая система может приближаться к оптимальной с точки зрения соотношения G/Gevap=1.
На фиг. 1 показана система охлаждения электронного оборудования, где:
1 - вход газа в канал;
2 - вход жидкости в канал;
3 - испаряющаяся пленка жидкости;
4 - подложка;
5 - электронный компонент;
6 - каплеформирователь;
7 - резервуар для газа;
8 - конденсатор-сепаратор;
9 - система охлаждения конденсатора;
10 - резервуар для жидкости.
Способ осуществляется следующим образом.
В случае незначительного тепловыделения на электронном компоненте (чипе) (5) в канал подается только газ (1). Если тепловая нагрузка возрастает, то в канал подается дополнительно жидкость (2), формируется пленка жидкости (3). С ростом тепловой нагрузки максимально увеличиваются расходы жидкости и газа (до ~1 г/с и 1 л/с, соответственно). В случае еще большего повышения тепловыделения на электронном компоненте (5), жидкость дополнительно подается в каплеформирователь (6), который расположен над заранее известными зонами наиболее интенсивного тепловыделения. Причем истечение микрокапель жидкости осуществляется против направления течения газа, с таким расчетом, чтобы капли преодолели движущийся поток газа и достигли поверхности электронного компонента в нужной области (например, в области повышенного локального тепловыделения в чипе, или в области нижней по потоку кромке чипа, где зарождается первое сухое пятно). Неиспарившаяся жидкость вместе с парогазовой смесью из канала поступают в конденсатор-сепаратор (8), где происходит конденсация пара и сепарация газа. Из конденсатора-сепаратора (8) жидкость поступает в резервуар для жидкости (10), а газ поступает в резервуар для газа (7). Для поддержания необходимой температуры конденсатора, используется система охлаждения конденсатора (9).
Данная система охлаждения может работать в условиях микрогравитации, гипергравитации и переменной гравитации, а кроме того на транспортных средствах -автомобили, скоростные поезда, морские суда, самолеты, обитаемые и необитаемые космические аппараты, и станции.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ ПЛЕНОЧНЫМИ И КАПЕЛЬНЫМИ ПОТОКАМИ ЖИДКОСТИ С ИСПОЛЬЗОВАНИЕМ ОРЕБРЕНИЯ | 2018 |
|
RU2706325C1 |
СИСТЕМА ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ПОТОКА ГАЗА И КОМБИНИРОВАННЫХ ПЛЕНОЧНЫХ И КАПЕЛЬНЫХ ПОТОКОВ ЖИДКОСТИ | 2023 |
|
RU2822416C1 |
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННЫХ ПЛЕНОЧНЫХ И ГАЗОКАПЕЛЬНЫХ ПОТОКОВ | 2019 |
|
RU2732624C1 |
ДВУХФАЗНАЯ, ГИБРИДНАЯ, ОДНОКОМПОНЕНТНАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ | 2020 |
|
RU2760884C1 |
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННЫХ ПОТОКОВ ГАЗА И МИКРОКАПЕЛЬ | 2021 |
|
RU2773679C1 |
Способ охлаждения электронного оборудования | 2020 |
|
RU2755608C1 |
УСТРОЙСТВО ФОРМИРОВАНИЯ ПРИСТЕННЫХ КАПЕЛЬНЫХ ТЕЧЕНИЙ ЖИДКОСТИ В МИКРО- И МИНИ-КАНАЛАХ | 2016 |
|
RU2620732C1 |
ИСПАРИТЕЛЬНО-КОНДЕНСАЦИОННАЯ ГАЗОЖИДКОСТНАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ | 2021 |
|
RU2781758C1 |
ИНТЕНСИВНЫЙ КОНДЕНСАТОР ПАРА С КОНТРАСТНЫМ И ГРАДИЕНТНЫМ СМАЧИВАНИЕМ | 2016 |
|
RU2640888C1 |
Двухфазная однокомпонентная замкнутая система охлаждения с использованием конденсатора - пленкоформирователя | 2023 |
|
RU2818424C1 |
Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанном на движении тонкой пленки жидкости за счет потока газа, согласно изобретению, осушенные области электронного компонента дополнительно орошаются потоками микрокапель жидкости с помощью каплеформирователя, расположенного на верхней стенке канала, над областями электронного компонента с максимальной плотностью теплового потока, причем истечение микрокапель жидкости осуществляют против направления течения газа под углом от 10 до 80 градусов к направлению течения газа. Технический результат - повышение эффективности охлаждения электронных компонентов. 1 ил.
Способ охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанный на движении тонкой пленки жидкости за счет потока газа в канале, отличающийся тем, что осушенные области электронного компонента дополнительно орошают потоками микрокапель жидкости с помощью каплеформирователя, расположенного на верхней стенке канала, над областями электронного компонента с максимальной плотностью теплового потока, причем истечение микрокапель жидкости осуществляется против направления течения газа под углом от 10 до 80 градусов к направлению течения газа.
ИСПАРИТЕЛЬ-КОНДЕНСАТОР | 2003 |
|
RU2246671C1 |
Статический гидрозатвор для турбогенераторов с водородным охлаждением | 1960 |
|
SU141207A1 |
WO 2005030358 A1, 07.04.2005 | |||
US 2013248153 A1, 26.09.2013. |
Авторы
Даты
2018-03-30—Публикация
2016-12-30—Подача